![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
Modern Synthesis Processes and Reactivity of Fluorinated Compounds focuses on the exceptional character of fluorine and fluorinated compounds. This comprehensive work explores examples taken from all classes of fluorine chemistry and illustrates the extreme reactivity of fluorinating media and the peculiar synthesis routes to fluorinated materials. The book provides advanced and updated information on the latest synthesis routes to fluorocompounds and the involved reaction mechanisms. Special attention is given to the unique reactivity of fluorine and fluorinated media, along with the correlation of those properties to valuable applications of fluorinated compounds.
Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells provides a complete overview of this important research area that is perfect for both newcomers and expert researchers in the field. Through concise chapters written and edited by esteemed experts, this book brings together a comprehensive treatment of the area previously only available through scattered, lengthy review articles in the literature. Advanced topics of research are covered, with particular focus on recent advances in the biological applications of transition metal complexes, including inorganic medicine, enzyme inhibitors, antiparasital agents, and biological imaging reagents.
Efficient Methods for Preparing Silicon Compounds is a unique and valuable handbook for chemists and students involved in advanced studies of preparative chemistry in academia and industry. Organized by the various coordination numbers (from two to six) of the central silicon atom of the reported compounds, this book provides researchers with a handy and immediate reference for any compound or properties needed in the area. Edited by a renowned expert in the field, each chapter explores a different type of compound, thoroughly illustrated with useful schemes and supplemented by additional references. Knowledgeable contributors report on a broad range of compounds on which they have published and which are already used on a broad scale or have the potential to be used in the very near future to develop a new field of research or application in silicon chemistry.
Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements. Individual chapters are comprehensive, broad, up-to-date critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements and publishes two volumes a year.
International Review of Cell and Molecular Biology presents comprehensive reviews and current advances in cell and molecular biology. The series has a worldwide readership, maintaining a high standard by publishing invited articles on important and timely topics authored by prominent cell and molecular biologists.
Photonic and Electronic Properties of Fluoride Materials: Progress in Fluorine Science, the first volume in this new Elsevier series, provides an overview of the important optical, magnetic, and non-linear properties of fluoride materials. Beginning with a brief review of relevant synthesis methods from single crystals to nanopowders, this volume offers valuable insight for inorganic chemistry and materials science researchers. Edited and written by leaders in the field, this book explores the practical aspects of working with these materials, presenting a large number of examples from inorganic fluorides in which the type of bonding occurring between fluorine and transition metals (either d- or 4f-series) give rise to peculiar properties in many fundamental and applicative domains. This one-of-a-kind resource also includes several chapters covering functional organic fluorides used in nano-electronics, in particular in liquid crystal devices, in organic light-emitting diodes, or in organic dyes for sensitized solar cells. The book describes major advances and breakthroughs achieved by the use of fluoride materials in important domains such as superconductivity, luminescence, laser properties, multiferroism, transport properties, and more recently, in fluoro-perovskite for dye-sensitized solar cells and inorganic fluoride materials for NLO, and supports future development in these varied and key areas. The book is edited by Alain Tressaud, past chair and founder of the CNRS French Fluorine Network. Each book in the collection includes the work of highly-respected volume editors and contributors from both academia and industry to bring valuable and varied content to this active field.
Spectral Methods in Transition Metal Complexes provides a conceptual understanding on how to interpret the optical UV-vis, vibrational EPR, and NMR spectroscopy of transition metal complexes. Metal complexes have broad applications across chemistry in the areas of drug discovery, such as anticancer drugs, sensors, special materials for specific requirements, and catalysis, so a thorough knowledge in preparation and characterization of metal complexes, while niche, is critical. Accessible to both the seasoned researcher and the graduate student alike, this book provides readers with a single source of content that addresses spectral methods in transition metal complexes.
Insights from Imaging in Bioinorganic Chemistry continues a long-running series that describes recent advances in scientific research, in particular, in the field of inorganic chemistry. Several highly regarded experts, mostly from academe, contribute on specific topics. The series editor chooses a sub-field within inorganic chemistry as the theme and focus of the volume, extending invitations to experts for their contributions; the current theme is insights from metal ion imaging in bioinorganic and medicinal chemistry.
Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference for the chemist, researcher, technician, or academic, presenting valuable, current insights into the synthesis of fluorine compounds and fluorination reactions using fluorinating agents.
Desulphurization and Denitrification of Diesel Oil using Ionic Liquids: Experiments and Quantum Chemical Predictions discusses how quantum chemical calculations are applied to investigate the fundamental nature of the IL-sulphur-nitrogen systems at atomic and molecular levels. The book will help readers understand the nature of the structural relationship between molecules such as ionic liquid + aromatic sulphur + aromatic nitrogen system(s). In addition, COSMO-RS (Conductor Like Screening Model for Real Solvents) predictions and subsequent experimentation are discussed to evaluate the performance of ionic liquids for desulphurization and denitrification of diesel oil.
NOx Related Chemistry is a volume of a series that presents timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced.
Multiferroics, materials with a coexistence of magnetic and ferroelectric order, provide an efficient route for the control of magnetism by electric fields. The authors cover multiferroic thin-film heterostructures, device architectures and domain/interface effects. They critically discuss achievements as well as limitations and assess opportunities for future applications.
The elucidation of reaction mechanisms generally requires the carefully designed control of molecular symmetry to distinguish between the many possible reaction pathways. Making and Breaking Symmetry in Chemistry emphasises the crucial role played by symmetry in modern synthetic chemistry. After discussion of a number of famous classical experiments, the advances brought about by the introduction of new techniques, in particular NMR spectroscopy, are exemplified in numerous cases taken from the recent literature. Experimental verification of many of the predictions made in Woodward and Hoffmann's explication of the Conservation of Orbital Symmetry are described. Applications that involve the breaking of molecular symmetry to resolve these and other mechanistic problems in organic, inorganic and organometallic chemistry are presented in the first sections of the book, together with many examples of the detection of hitherto hidden rearrangement processes.Subsequently, under the aegis of making molecular symmetry, examples of the preparation of highly symmetrical molecules found in the organic, organometallic or inorganic domains are discussed. These include Platonic hydrocarbons or boranes, tetrahedranes, cubanes, prismanes, dodecahedrane, fullerene fragments such as corannulene, sumanene or semibuckminsterfullerene, and other systems of unusual geometries or bonding characteristics (Moebius strips, molecular brakes and gears, Chauvin's carbomers, Fitjer's rotanes, persubstituted rings, metal-metal multiple bonds, etc.). The text also contains vignettes of many of the scientists who made these major advances, as well as short sections that briefly summarise key features of important topics that underpin the more descriptive material. These include some aspects of chirality, NMR spectroscopy, and the use of isotopic substitution to break molecular symmetry. A brief appendix on point group symmetry and nomenclature is also helpfully provided.
The rare earths represent a group of chemical elements, the lanthanides, together with scandium and yttrium, which exhibit similar chemical properties. They are strategically important to developed and developing nations because they have several applications in catalysis, the defense industry, aerospace, the materials and life sciences and in sustainable energy technologies. The "Handbook on the Physics and Chemistry of the Rare Earths"
is a continuing authoritative series that deals with the science
and technology of the rare earth elements in an integrated manner.
Each chapter is a comprehensive, up-to-date, critical review of a
particular segment of the field. The work offers the researcher and
graduate student a complete and thorough coverage of this
fascinating field.
Chalcogen-nitrogen chemistry involves the study of compounds that exhibit a linkage between nitrogen and sulfur, selenium or tellurium atoms. Since the publication of A Guide to Chalcogen-Nitrogen Chemistry in 2005, the emphasis of investigations of chalcogen-nitrogen compounds has advanced from a focus on fundamental studies to the development of practical applications, as indicated by the title of this new edition. Pharmaceutical applications of organic sulfur-nitrogen compounds include drugs for the treatment of various diseases, as well as probes for locating tumour cells. From a materials perspective, carbon-containing chalcogen-nitrogen heterocycles have applications in everyday devices such as LEDs and solar cells. A new technology based on binary sulfur nitrides is being used for fingerprint detection in forensic science. As a result, this book includes seven new chapters and updates the others with extensive literature coverage of developments since 2005 while retaining earlier seminal results. This comprehensive text is essential for anyone working in the field, and the four introductory chapters emphasise general concepts that will be helpful to the non-specialist. The treatment is unique in providing a comparison of sulfur, selenium and tellurium compounds. Each chapter is designed to be self-contained, and there are extensive cross-references between chapters. |
You may like...
Fundamentals of Algebraic Specification…
Hartmut Ehrig, Bernd Mahr
Hardcover
R1,491
Discovery Miles 14 910
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
Prisoner 913 - The Release Of Nelson…
Riaan de Villiers, Jan-Ad Stemmet
Paperback
R542
Discovery Miles 5 420
Graphical Programming Using LabVIEW (TM…
Julio Cesar Rodriguez-Quinonez, Oscar Real-Moreno
Hardcover
Setting Environmental Standards - The…
Vic Barnett, A. O'Hagan
Hardcover
R1,033
Discovery Miles 10 330
|