![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Inorganic chemistry > General
One of the biggest questions in today's biochemistry is how biological molecules became essential for the processes that occur within living cells. This new book from outstanding Metal Ions in Life Science series gives an overview about biochemical evolution of organic molecules and metabolic pathways in living systems and outlines the vital biochemical processes in microbial cells in which metals are involved.
This continuing authoritative series deals with the chemistry, materials science, physics and technology of the rare earth elements in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The work offers the researcher and graduate student a complete and thorough coverage of this fascinating field. Authoritative
The International Workshop "New sources, novel phases, new
applications," the third of the series on "Oxide based materials,"
was held September 13 to 16, 2004 at Societa del Casino Sociale in
Como, Italy. The workshop brought together experimental and
theoretical scientists of different origins and expertise to
exchange information on common scientific research fields,
especially on all those materials whose features and properties
depend on the interaction between surface and ionic and/or
molecular species. Knowledge of familiar materials was compared and
experiences shared on a varied range of different materials, often
new materials, including metal oxides, zeolites and other
microporous compounds, mesoporous silicates and silica, hybrid
inorganic-organic compounds, soil aggregates, layered materials,
and bioactive glasses.
"Perovskite-Based Solar Cells: From Fundamentals to Tandem Devices" gives fundamental understanding of perovskite solar cells from the chemical composition of each thin layer composing the different stacks to the whole device. Special attention has been given to the development of the materials forming the perovskite solar cell and their effect on the device performance, in addition to the recent progress of this emerging technology. Moreover, light has been shed on the perovskite elaboration techniques, in addition to the several techniques proposed to improve both the efficiency and the stability of perovskite solar cells. Furthermore, special emphasis was given to the three types of tandem solar cells and their recent advances starting from Perovskite/perovskite tandem solar cells to Perovskite/ CIGS tandem cells to perovskite/ heterojunction silicon tandem solar cells. The latter constitute a promising solution to improve photovoltaic solar cells performance.
In recent years the Japanese have funded a comprehensive study of
carbon materials which incorporate other elements including boron,
nitrogen and fluorine, hence the title of the project "Carbon
Alloys." Coined in 1992, the phrase "Carbon Alloys" can be applied to
those materials mainly composed of carbon materials in
multi-component systems. The carbon atoms of each component have a
physical and/or chemical interactive relationship with other atoms
or compounds. The carbon atoms of the components may have different
hybrid bonding orbitals to create quite different carbon
components. Eiichi Yasuda and his team consider the definition of Carbon
Alloys, present the results of the Carbon Alloys projects, describe
typical Carbon Alloys and their uses, discuss recent techniques for
their characterization, and finally, illustrate potential
applications and future developments for Carbon Alloy science. The
book contains over thirty chapters on these studies from as many
researchers. The most modern of techniques, particularly in the area of
spectroscopy, were used as diagnostic tools, and many of these are
applicable to pure carbons also. Porosity in carbons received
considerable attention.
This book presents the applications of ion-exchange materials in the chemical and food industries. It includes topics related to the application of ion exchange chromatography in water softening, purification and separation of chemicals, separation and purification of food products and catalysis. This title is a highly valuable source of knowledge on ion-exchange materials and their applications suitable for postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology. Additionally, this book will provide an in-depth knowledge of ion-exchange column and operations suitable for engineers and industrialists.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapters "Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology", "Proteins in Ionic Liquids: Current Status of Experiments and Simulations", "Lewis Acidic Ionic Liquids" and "Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The introduction of carbon - fluorine bonds into organic compounds can profoundly influence their chemical and physical properties when compared to their non-fluorine containing analogues, leading to a range of man-made materials with highly desirable properties. These molecules are of interest across the wide spectrum of industrial and academic organic chemistry, from pharmaceuticals, through fine and specialty chemicals to polymers. From Prozac to Teflon, many of the most important products of the chemical and life-science industries rely on organic fluorine chemistry for their useful properties. In this new book the author, internationally known for his contribution to organic fluorine chemistry, covers both the preparative methodologies and chemical properties of partially and highly fluorinated organic systems. Written as an authoritative guide to the subject for organic chemists in universities and the pharmaceutical, agrochemical, specialty organic and polymer industries, the book will also be an important resource for university advanced courses. Dick Chambers is a Fellow of the Royal Society and Emeritus Professor of Chemistry at the University of Durham, Durham, UK.
The book provides a detailed state-of-the-art overview of inorganic chemistry applied to medicinal chemistry and biology. It covers the newly emerging field of metals in medicine and the future of medicinal inorganic chemistry. Further it includes metal based medicines used in alternative systems of Ayurveda as well as Tibetan Zuotai to make it a holistic approach. It is an essential reading for every researcher and student in medicinal and bioinorganic chemistry.
Since the first works introducing the aluminum intercalated clay family in the early 1970s, interest in the synthesis of pillared interlayered clays has increased tremendously, especially research into the properties and applications of new synthesis methods. The need for solids that could be used as cracking catalysts with larger pores than zeolitic materials has spurred the synthesis of new porous materials from clays. Pillared Clays and Related Catalysts reviews the properties and applications of pillared clays and other layered materials used as catalysts, focusing on: the acidity of pillared clays and the effect it has on catalytic performance the use of pillared clays as supports for catalytically active phases, and the use of the resulting solids in environmentally friendly reactions the applications of the selective reduction of NOx the comparison between the reactions of pillared clays and anionic clays.
Even at the beginning of the new millenium the rare earths still
remain, to a certain extent, a mystery. The chapters in this volume
will help to unravel some of these. In the filling of the 4f
electronic orbitals the lanthanides defy the elementary aufbau
principle that underlies the periodic sequence of the elements, and
the authors of the first chapter introduce the readers to the basic
physics of the orbital collapse leading to that failure.
Furthermore an explanation is offered in terms of double-well
potentials. The phenomenon is illustrated using the valence
transitions observed in some of the rare earth atoms, including Sm
group metals and the higher oxides of cerium, praseodymium and
terbium. In the second chapter the synthesis and structure of the
many types of rare earth halides are described. They have been
described as simple, complex, binary, ternary and multinuclear
complex, and other categories needed to deal with the most studied
of the rare earth compounds. The structure types are skillfully
illustrated to show the elementary architecture of each type.
Techniques of solid state nuclear magnetic resonance (NMR)
spectroscopy are constantly being extended to a more diverse range
of materials, pressing into service an ever-expanding range of
nuclides including some previously considered too intractable to
provide usable results. At the same time, new developments in both
hardware and software are being introduced and refined. This book
covers the most important of these new developments.
"This book presents the reader with a fresh and unconventional approach to teaching crystallographic symmetry. Whereas traditional crystallography textbooks make a heavy use of algebra and rapidly become very technical, this book adopts in the first few chapters a 'pictorial' approach based on the symmetry diagrams of the International Tables for Crystallography. Readers are led step-by-step through simple 'frieze' and 'wallpaper' patterns, with many examples from the visual arts. At the end of chapter 3 they should be able to identify and analyse all these simple symmetries and apply to them the nomenclature and symbols of the International Tables. Mathematical formalism is introduced later on in the book, and by that time the reader will have gained a solid intuitive grasp of the subject matter. This book will provide graduate students, advanced undergraduate students and practitioners in physics, chemistry, earth sciences and structural biology with a solid foundation to master the International Tables of Crystallography, and to understand the relevant literature"--
Understanding the mechanisms of crystallization processes on the molecular level is an essential step in the control of the formation of crystals. These crystals may be a desirable solid product or an undesirable precipitate. Crystallization Processes
There is currently significant interest in exploring and identifying new inorganic solar energy conversion systems based on Earth-abundant non-toxic materials for future sustainable energy applications and technologies. Developments in emergent inorganic absorbers are closely tied to the ability of researchers to correlate and predict device performance from structural and optical properties. The understanding of material structure and bonding and their effect on performance are key to developing guiding principles for design and screening of inorganic photovoltaic materials. Progress toward such understanding is facilitated by state-of-the-art tools for structural and electronic characterisation of semiconductor materials and interfaces, as well as device design and performance analysis. Further insight is provided by computer modelling and simulations. This volume brings together internationally leading scientists working in areas of material design and modelling, structural and electronic characterisation, and device design and performance analysis, to explore and exchange ideas on emerging inorganic thin-film photovoltaics based on Earth abundant non-toxic materials. In this volume, the topics covered include: Indium-free CIGS analogues Bulk and surface characterisation techniques of solar absorbers Novel chalcogenides, pnictides and defect-tolerant semiconductors Materials design and bonding |
You may like...
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Comprehensive Organometallic Chemistry…
Gerard Parkin, Karsten Meyer, …
Hardcover
R174,021
Discovery Miles 1 740 210
Tools of Chemistry Education Research
Diane M Bunce, Renee S. Cole
Hardcover
R5,206
Discovery Miles 52 060
Fluorine-Related Nanoscience with Energy…
Donna Nelson, Christohpher Brammer
Hardcover
R2,724
Discovery Miles 27 240
Advances in Inorganic Chemistry: Recent…
Rudi van Eldik, Colin D. Hubbard
Hardcover
R6,633
Discovery Miles 66 330
|