![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Specific ion effects are important in numerous fields of science and technology. They have been discussed for over 100 years, ever since the pioneering work done by Franz Hofmeister and his group in Prague. Over the last decades, hundreds of examples have been published and periodically explanations have been proposed. However, it is only recently that a profound understanding of the basic effects and their reasons could be achieved. Today, we are not far from a general explanation of specific ion effects. This book summarizes the main new ideas that have come up in the last ten years.In this book, the efforts of theoreticians are substantially supported by the experimental results stemming from new and exciting techniques. Both the new theoretical concepts and the experimental landmarks are collected and critically discussed by eminent scientists and well-known specialists in this field. Beyond the rigorous explanations, guidelines are given to non-specialists in order to help them understand the general rules governing specific ion effects in chemistry, biology, physics and engineering.
This book traces the history of ideas about the nature of matter and also the way that mankind has used material resources that the world offers. Starting with the ideas of ancient civilizations that air, earth, fire and water were the basic ingredients of all matter, it traces the development of the science of chemistry beginning within the ranks of the alchemists. First, the idea of elements grew and then the atomic nature of matter was verified. Physicists had entered the scene, showing the nature of atoms in terms of fundamental particles and then introducing the concept of wave-particle duality that altered the basic concepts of what matter was. Finally the physicists discovered a panoply of fundamental particles, some observed within atom-smashing machines and the existence of others merely postulated. In parallel with the above there is a description of various kinds of matter as it affects everyday life, including the nature of matter associated with life itself. The way that early man used the materials directly given by nature, such as stone, wood and animal skins, is followed by the use of materials requiring some process to be employed, e.g. metals which include bronze and also concrete. Some important modern materials are discussed, such as synthetic fibres and plastics and semiconductors, and potentially important future products from new developments in nanotechnology.
This edited volume provides an extensive overview of how nuclear magnetic resonance can be an indispensable tool to investigate molecular ordering, phase structure, and dynamics in complex anisotropic phases formed by liquid crystalline materials. The chapters, written by prominent scientists in their field of expertise, provide a state-of-the-art scene of developments in liquid crystal research. The fantastic assortment of shape anisotropy in organic molecules leads to the discoveries of interesting new soft materials made at a rapid rate which not only inject impetus to address the fundamental physical and chemical phenomena, but also the potential applications in memory, sensor and display devices. The review volume also covers topics ranging from solute studies of molecules in nematics and biologically ordered fluids to theoretical approaches in treating elastic and viscous properties of liquid crystals. This volume is aimed at graduate students, novices and experts alike, and provides an excellent reference material for readers interested in the liquid crystal research. It is, indeed, a reference book for every science library to have.
This is the seventh volume in the successful series designed to help the chemistry community keep current with the many new developments in computational techniques. The writing style is refreshingly pedagogical and non-mathematical, allowing students and researchers access to computational methods outside their immediate area of expertise. Each invited author approaches a topic with the aim of helping the reader understand the material, solve problems, and locate key references quickly.
This book traces the history of ideas about the nature of matter and also the way that mankind has used material resources that the world offers. Starting with the ideas of ancient civilizations that air, earth, fire and water were the basic ingredients of all matter, it traces the development of the science of chemistry beginning within the ranks of the alchemists. First, the idea of elements grew and then the atomic nature of matter was verified. Physicists had entered the scene, showing the nature of atoms in terms of fundamental particles and then introducing the concept of wave-particle duality that altered the basic concepts of what matter was. Finally the physicists discovered a panoply of fundamental particles, some observed within atom-smashing machines and the existence of others merely postulated. In parallel with the above there is a description of various kinds of matter as it affects everyday life including the nature of matter associated with life itself. The way that early man used the materials directly given by nature, such as stone, wood and animal skins, is followed by the use of materials requiring some process to be employed, e.g. metals which include bronze and also concrete. Some important modern materials are discussed, such as synthetic fibres and plastics and semiconductors, and potentially important future products from new developments in nanotechnology.
This title includes a number of Open Access chapters. Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This new volume presents a selection of articles on topics in the field.
An excellent knowledge base in soil and water chemistry —the ideal basic text for students of the environmental sciences In Environmental Soil and Water Chemistry, leading soil and water authority V. P. Evangelou presents a complete overview of the principles and applications of soil science, addressing the subject by viewing the interactions between soil and water as a basis for understanding the nature, extent, and treatment of polluted soil and water. The text opens with a discussion of principles—the fundamental tenets of chemistry needed to understand soil and water quality and treatment of polluted resources—and continues with a look at applications for the control and treatment of soil and water. Suitable for advanced undergraduates and beginning graduate students, this extensive, timely volume covers:
In a world where chemical pollutants pose a grave threat to the earth's natural resources, Environmental Soil and Water Chemistry offers students both an excellent textbook and a handy reference on the wide spectrum of environmental problems they will confront outside the classroom.
This monograph offers a comprehensive overview of diverse quantization phenomena in layered materials, covering current mainstream experimental and theoretical research studies, and presenting essential properties of layered materials along with a wealth of figures. This book illustrates commonly used synthesis methods of these 2D materials and compares the calculated results and experimental measurements, including novel features not yet reported. The book also discusses experimental measurements of magnetic quantization, theoretical modeling for studying systems and covers diversified magneto-electronic properties, magneto-optical selection rules, unusual quantum Hall conductivities, and single- and many-particle magneto-Coulomb excitations. Rich and unique behaviors are clearly revealed in few-layer graphene systems with distinct stacking configuration, stacking-modulated structures, silicon-doped lattices, bilayer silicene/germanene systems with the bottom-top and bottom-bottom buckling structures, monolayer and bilayer phosphorene systems, and quantum topological insulators. The generalized tight-binding model, the static and dynamic Kubo formulas, and the random-phase approximation are developed/modified to thoroughly explore the fundamental properties and propose the concise physical pictures. Different high-resolution experimental measurements are discussed in detail, and they are consistent with the theoretical predictions. Aimed at readers working in materials science, physics, and engineering this book should be useful for potential applications in energy storage, electronic devices, and optoelectronic devices.
Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource. Key features: Accessible utility in a single volume reference. Chapters authored by known leading figures in the Plasmonics field. New volume publishes annually. Comprehensive coverage of the year's hottest and emerging topics. Reviews in Plasmonics 2011 topics include: Metal Nanoparticles for Molecular Plasmonics. Surface Plasmon Resonance based Fiber Optic Sensors. Elastic Light Scattering of Biopolymer/Gold Nanoparticles Fractal Aggregates. Influence of electron quantum confinement on the electronic response of metal/metal interfaces. Melting Transitions of DNA-Capped Gold Nanoparticle Assemblies. Nanomaterial Based Long Range Optical Ruler for Monitoring Biomolecular Activities. Plasmonic Gold and Silver Films: Selective Enhancement of Chromophore Raman Scattering or Plasmon-Assisted Fluorescence.
This volume presents an up-to-date review of modern materials and concepts, issues, and recent advances in analytical and physical chemistry. Distinguished scientists and engineers from key institutions worldwide have contributed chapters that provide a deep analysis of their particular subjects. The chapters discuss the composition and properties of complex materials as well as mixtures, processes, and the need for new and improved analytical technology.
Portable X-ray fluorescence (PXRF) instrumentation has some unique analytical capabilities for the in situ analysis of samples in the field. These capabilities have been extended in recent years by the continuing development of solid state detectors, surface mounted electronics, digital signal processing technology, Li-ion batteries combined with a choice of rugged sealed radioisotope sources or miniature X-ray tubes that provide lightweight hand-held devices. As well as opening up new applications, in situ measurements by PXRF, where the instrument is placed in direct contact with the object to be analysed, involve the complete integration of sampling and analysis. Careful interpretation of results is therefore required, particularly when the analysis is used to estimate the bulk composition of a sample. In this monograph, an overview is given of instrumentation, analytical capabilities, and limitations in the interpretation of results, sampling considerations and applications where PXRF offers substantial advantages over conventional analytical techniques. The aim is to give the reader an insight into the capabilities of the technique and to demonstrate the contribution it can make to a range of areas of contemporary scientific interest. Chapters are written by internationally recognised scientists with practical experience of in situ analysis using portable X-ray fluorescence and demonstrates the wide range of applications for the technique. The topics covered are illustrated with diagrams and photographs where appropriate and each chapter includes supporting references to enable the reader to gain a greater understanding of a particular application. Topics include: -analytical capabilities -instrumentation -quantification -correction procedures -sampling considerations -future developments Applications include: -the assessment of contaminated land -surfaces -coatings and paints -workplace monitoring -metal & alloy sorting -geochemical prospecting -archaeological investigations -museum samples & works of art -extraterrestrial analysis The work is aimed at scientists who have some knowledge of analytical techniques and/or the applications covered, but are not fully familiar with the capabilities of PXRF. It offers a general introduction to the technique and its applications rather than a research monograph. As such, it is aimed at analytical scientists, environmental and geological scientists, industrial hygienists, industrial and plant scientists, archaeometrists and museum researchers, research scientists and research students with projects in the applications covered. Undergraduate students studying associated degree courses will also benefit from the work.
Exploring recent developments in the field, Coarse-Graining of Condensed Phase and Biomolecular Systems examines systematic ways of constructing coarse-grained representations for complex systems. It explains how this approach can be used in the simulation and modeling of condensed phase and biomolecular systems. Each chapter focuses on specific examples of evolving coarse-graining methodologies and presents results for a variety of complex systems. The contributors carefully detail their own coarse-graining approach, exploring its motivation, strengths, weaknesses, and important application examples. They discuss two of the most successful coarse-graining schemes for soft matter: inverse and multiscale coarse-graining. The book also describes current coarse-grained model development for peptides and proteins at the amino acid level and larger length scales. Assembling the work of some of the most influential, world-renowned researchers in the field, this book provides a unified, in-depth overview of all the coarse-grained schemes developed for condensed phase and biomolecular systems. It shows the promise of coarse-graining as a revolutionary advancement in the scientific community.
In the mid-nineteenth century, chemists came to the conclusion that
elements should be organized by their atomic weights. However, the
atomic weights of various elements were calculated erroneously, and
chemists also observed some anomalies in the properties of other
elements. Over time, it became clear that the periodic table as
currently comprised contained gaps, missing elements that had yet
to be discovered. A rush to discover these missing pieces followed,
and a seemingly endless amount of elemental discoveries were
proclaimed and brought into laboratories. It wasn't until the
discovery of the atomic number in 1913 that chemists were able to
begin making sense of what did and what did not belong on the
periodic table, but even then, the discovery of radioactivity
convoluted the definition of an element further. Throughout its
formation, the periodic table has seen false entries, good-faith
errors, retractions, and dead ends; in fact, there have been more
elemental "discoveries" that have proven false than there are
current elements on the table.
The present volume includes most of the material of the invited lectures delivered at the NATO Advanced Study Institute "Morphogenesis through the interplay of nonlinear chemical instabilities and elastic active media" held from 2th to 14th July 2007 at the Institut d'Etudes Scientifiques de Cargese (http: //www.iesc.univ-corse.fr/), in Corsica (France). This traditional place to organize Summer Schools and Workshops in a well equipped secluded location at the border of the Mediterranean sea has, over many years now, earned an increasing deserved reputation. Non-linear dynamics of non equilibrium systems has worked its way into a great number of fields and plays a key role in the understanding of se- organization and emergence phenomena in domains as diverse as chemical reactors, laser physics, fluid dynamics, electronic devices and biological morphogenesis. In the latter case, the viscoelastic properties of tissues are also known to play a key role. The control and formulation of soft responsive or "smart" materials has been a fast growing field of material science, specially in the area of po- mer networks, due to their growing applications in bio-science, chemical sensors, intelligent microfluidic devices, ... . Nature is an important p- vider of active materials whether at the level of tissues or at that of s- cellular structures. As a consequence, the fundamental understanding of the physical mechanisms at play in responsive materials also shines light in the understanding of biological artefacts."
This book collects all the latest advances in the leading research of the circularly polarized luminescence (CPL) of small organic molecules. Compared with that of lanthanide-based fluorophores, the research into the CPL of small organic molecules is still at the developmental stage for their relatively smaller dissymmetric factors, but has been a source of widespread attention recently. The book includes the state of the art of the discoveries in CPL organic molecules, such as helicenes, biaryls, cyclophanes, boron dipyrromethene dyes, and other chiral molecules, mostly in their isolated states, covering all possible chiral substances for future applications. This book also highlights the recent development of CPL instruments as well as time-resolved circular dichroism spectroscopy, to facilitate the further development and future design of CPL molecules.
In Resonances, Instability, and Irreversibility: The Liouville Space Extension of Quantum Mechanics T. Petrosky and I. Prigogine Unstable Systems in Generalized Quantum Theory E. C. G. Sudarshan, Charles B. Chiu, and G. Bhamathi Resonances and Dilatation Analyticity in Liouville Space Erkki J. BrAndas Time, Irreversibility, and Unstable Systems in Quantum Physics E. Eisenberg and L. P. Horwitz Quantum Systems with Diagonal Singularity I. Antoniou and Z. Suchanecki Nonadiabatic Crossing of Decaying Levels V. V. and Vl. V. Kocharovsky and S. Tasaki Can We Observe Microscopic Chaos in the Laboratory? Pierre Gaspard Proton Nonlocality and Decoherence in Condensed Matter -- Predictions and Experimental Results C. A. Chatzidimitriou-Dreismann "We are at a most interesting moment in the history of science. Classical science emphasized equilibrium, stability, and time reversibility. Now we see instabilities, fluctuations, evolution on all levels of observations. This change of perspective requires new tools, new concepts. This volume invites the reader not to an enumeration of final achievements of contemporary science, but to an excursion to science in the making." --from the Foreword by I. Prigogine What are the dynamical roots of irreversibility? How can past and future be distinguished on the fundamental level of description? Are human beings the children of time --or its progenitors? In recent years, a growing number of chemists and physicists have agreed that the solution to the problem of irreversibility requires an extension of classical and quantum mechanics. There is, however, no consensus on which direction this extension should taketo include the dynamical description of irreversible processes. Resonances, Instability, and Irreversibility surveys recent attempts --both direct and indirect --to address the problem of irreversibility. Internationally recognized researchers report on their recent studies, which run the gamut from experimental to highly mathematical. The subject matter of these papers falls into three categories: classical systems with emphasis on chaos and dynamical instability, resonances and unstable quantum systems, and the general problem of irreversibility. Presenting the cutting edge of research into some of the most compelling questions that face contemporary chemical physics, Resonances, Instability, and Irreversibility is fascinating reading for professionals and students in every area of the discipline.
A novel proposal for teaching organic chemistry based on a broader and simplified use of quantum chemistry theories and notions of some statistical thermodynamic concepts aiming to enrich the learning process of the organic molecular properties and organic reactions. A detailed physical chemistry approach to teach organic chemistry for undergraduate students is the main aim of this book. A secondary objective is to familiarize undergraduate students with computational chemistry since most of illustrations of optimized geometries (plus some topological graphs) and information is from quantum chemistry outputs which will also enable students to obtain a deeper understanding of organic chemistry.
A concise description of models and quantitative parameters in structural chemistry and their interrelations, with 280 tables and >3000 references giving the most up-to-date experimental data on energy characteristics of atoms, molecules and crystals (ionisation potentials, electron affinities, bond energies, heats of phase transitions, band and lattice energies), optical properties (refractive index, polarisability), spectroscopic characteristics and geometrical parameters (bond distances and angles, coordination numbers) of substances in gaseous, liquid and solid states, in glasses and melts, for various thermodynamic conditions. Systems of metallic, covalent, ionic and van der Waals radii, effective atomic charges and other empirical and semi-empirical models are critically revised. Special attention is given to new and growing areas: structural studies of solids under high pressures and van der Waals molecules in gases. The book is addressed to researchers, academics, postgraduates and advanced-course students in crystallography, materials science, physical chemistry of solids.
Microbial biosurfactants are green molecules with high application potential in environmental and industrial sectors. Chemical diversity of biosurfactants allows them versatility and broad range surfactants capability without compromising performance or economic viability. Biosurfactants are used as emulsifiers, dispersants, wetting agents, oil recovery agents, biopesticides, stabilizers, solubilizers, and bioremediation agents (pesticide, heavy metals and oil spill cleanup). This comprehensive book on biosurfactants and their environmental and industrial applications offers a broad spectrum of information on potential applications of biosurfactants in various fields and related technological developments.
"The chapters in this book survey the progress in simulating biomolecular dynamics.... The images conjured up by this work are not yet universally loved, but are beginning to bring new insights into the study of biological structure and function. The future will decide whether this scientific movement can bring forth its Picasso or Modigliani." -from the Foreword by Peter G. Wolynes, Bullard-Welch Foundation Professor of Science, Rice University This book highlights the state-of-art in coarse-grained modeling of biomolecules, covering both fundamentals as well as various cutting edge applications. Coarse-graining of biomolecules is an area of rapid advances, with numerous new force fields having appeared recently and significant progress made in developing a systematic theory of coarse-graining. The contents start with first fundamental principles based on physics, then survey specific state-of-art coarse-grained force fields of proteins and nucleic acids, and provide examples of exciting biological problems that are at large scale, and hence, only amenable to coarse-grained modeling. Introduces coarse-grained models of proteins and nucleic acids. Showcases applications such as genome packaging in nuclei and understanding ribosome dynamics Gives the physical foundations of coarse-graining Demonstrates use of models for large-scale assemblies in modern studies Garegin A. Papoian is the first Monroe Martin Associate Professor with appointments in the Department of Chemistry and Biochemistry and the Institute for Physical Science and Technology at the University of Maryland.
This book is dedicated to the field of conductive polymers, focusing on electrical interactions with biological systems. It addresses the use of conductive polymers as the conducting interface for electrical communications with the biological system, both in vitro and in vivo. It provides an overview on the chemistry and physics of conductive polymers, their useful characteristics as well as limitations, and technologies that apply conductive polymers for medical purposes. This groundbreaking resource addresses cytotoxicity and tissue compatibility of conductive polymers, the basics on electromagnetic fields, and commonly used experimental methods. Readers will also learn how cells are cultured in vitro with conductive polymers, and how conductive polymers and living tissues interact electrically. Throughout the contents, chapter authors emphasize the importance of conductive polymers in biomedical engineering and their potential applications in medicine.
Innovation through specific and rational design and functionalization has led to the development of a wide range of mesoporous materials with varying morphologies (hexagonal, cubic, rod-like), structures (silicates, carbons, metal oxides), and unique functionalities (doping, acid functionalization) that currently makes this field one of the most exciting in materials science and energy applications. This book focuses primarily on the rapid progress in their application in energy conversion and storage technologies, including supercapacitor, Li-ion battery, fuel cells, solar cells, and photocatalysis (water splitting) and will serve as a valuable reference for researchers in the field
The work presented in this thesis involves a number of sophisticated experiments highlighting novel applications of the Pixel Imaging Mass Spectrometry (PImMS) camera in the field of photoinduced molecular dynamics. This approach represents the union of a new enabling technology (a multiple memory register, CMOS-based pixel detector) with several modern chemical physics approaches and represents a significant leap forward in capabilities. Applications demonstrated include three-dimensional imaging of photofragment Newton spheres, simultaneous electron-ion detection using a single sensor, and ion-ion velocity correlation measurements that open the door to novel covariance imaging experiments. When combined with Coulomb explosion imaging, such an approach is demonstrated to allow the measurement of molecular structure and motion on a femtosecond timescale. This is illustrated through the controlled photoexcitation of torsional motion in biphenyl molecules and the subsequent real-time measurement of the torsional angle.
This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.
Written by a chemical physicist specializing in macromolecular physics, this book brings to life the definitive work of celebrated scientists who combined multidisciplinary perspectives to pioneer the field of polymer science. The author relates firsthand the unique environment that fostered the experimental breakthroughs underlying some of today's most widely accepted theories, mathematical principles, and models for characterizing macromolecules. Physical Chemistry of Macromolecules employs the unifying principles of physical chemistry to define the behavior, structure, and intermolecular properties of macromolecules in both solution and bulk states. The text explains the experimental techniques, such as light scattering, and results used to support current theories. Examining both equilibrium and transport properties, the book describes the properties of dilute, semi-dilute, and concentrated polymer solutions, including compressible fluids. It then covers amorphous liquids and glasses, and polymer networks. The final chapters discuss the properties of solutions containing stiff-chain molecules and polyelectrolytes. Topics also include the macromolecular nature of rubber elasticity, viscoelasticity, and the distribution of relaxation times associated with the glass transition. By explaining the experimental and mathematical basis for the theories and models used to define macromolecular behavior, Physical Chemistry of Macromolecules demonstrates how these techniques and models can be applied to analyze and predict the properties of new polymeric materials. |
You may like...
Beyond The Story - 10 Year Record Of BTS
Bts, Myeongseok Kang
Hardcover
(4)
Research Anthology on Developing…
Information Reso Management Association
Hardcover
R8,733
Discovery Miles 87 330
Glory of the Lord VOL 6 - Theology: The…
Hans Urs Von Balthasar
Hardcover
R5,931
Discovery Miles 59 310
God Saved Me for a Reason - The Story of…
George Snodgrass
Paperback
|