![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
A concise description of models and quantitative parameters in structural chemistry and their interrelations, with 280 tables and >3000 references giving the most up-to-date experimental data on energy characteristics of atoms, molecules and crystals (ionisation potentials, electron affinities, bond energies, heats of phase transitions, band and lattice energies), optical properties (refractive index, polarisability), spectroscopic characteristics and geometrical parameters (bond distances and angles, coordination numbers) of substances in gaseous, liquid and solid states, in glasses and melts, for various thermodynamic conditions. Systems of metallic, covalent, ionic and van der Waals radii, effective atomic charges and other empirical and semi-empirical models are critically revised. Special attention is given to new and growing areas: structural studies of solids under high pressures and van der Waals molecules in gases. The book is addressed to researchers, academics, postgraduates and advanced-course students in crystallography, materials science, physical chemistry of solids.
The work presented in this thesis involves a number of sophisticated experiments highlighting novel applications of the Pixel Imaging Mass Spectrometry (PImMS) camera in the field of photoinduced molecular dynamics. This approach represents the union of a new enabling technology (a multiple memory register, CMOS-based pixel detector) with several modern chemical physics approaches and represents a significant leap forward in capabilities. Applications demonstrated include three-dimensional imaging of photofragment Newton spheres, simultaneous electron-ion detection using a single sensor, and ion-ion velocity correlation measurements that open the door to novel covariance imaging experiments. When combined with Coulomb explosion imaging, such an approach is demonstrated to allow the measurement of molecular structure and motion on a femtosecond timescale. This is illustrated through the controlled photoexcitation of torsional motion in biphenyl molecules and the subsequent real-time measurement of the torsional angle.
This book provides a review of biochemistry as an algebra of molecules of living matter and utilizes Clifford algebras to discuss the basic biochemical processes of DNA replication, DNA transcription, RNA splicing and translation. Viral carcinogenesis is discussed in depth, specific attention is paid to the structural features of biomolecules that define a particular Clifford algebra, and useful examples of genetic information being transformed into Clifford algebras are provided.
This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.
Written by a chemical physicist specializing in macromolecular physics, this book brings to life the definitive work of celebrated scientists who combined multidisciplinary perspectives to pioneer the field of polymer science. The author relates firsthand the unique environment that fostered the experimental breakthroughs underlying some of today's most widely accepted theories, mathematical principles, and models for characterizing macromolecules. Physical Chemistry of Macromolecules employs the unifying principles of physical chemistry to define the behavior, structure, and intermolecular properties of macromolecules in both solution and bulk states. The text explains the experimental techniques, such as light scattering, and results used to support current theories. Examining both equilibrium and transport properties, the book describes the properties of dilute, semi-dilute, and concentrated polymer solutions, including compressible fluids. It then covers amorphous liquids and glasses, and polymer networks. The final chapters discuss the properties of solutions containing stiff-chain molecules and polyelectrolytes. Topics also include the macromolecular nature of rubber elasticity, viscoelasticity, and the distribution of relaxation times associated with the glass transition. By explaining the experimental and mathematical basis for the theories and models used to define macromolecular behavior, Physical Chemistry of Macromolecules demonstrates how these techniques and models can be applied to analyze and predict the properties of new polymeric materials.
This book discusses various aspects of different bulk TSO single crystals in terms of thermodynamics; bulk crystal growth using diverse techniques involving gas phase, solution, and melt; and the resulting crystal size, appearance, and structural quality as well as the fundamental properties that were gathered from bulk single crystals. It presents experimental results accompanied by theoretical results, such as band structure and native defects. Combinations of various bulk single crystals along with their properties show great promise in practical device functionality and fabrication. Many TSO-based devices have already been demonstrated in several technical areas, including electronics, optoelectronics, and photovoltaics as well as sensing devices. The book is the first of its kind that brings together a variety of bulk single crystals of scientifically and technically important TSOs along with their properties, which may result in novel devices with unique functionalities.
Computational and theoretical tools for understanding biological processes at the molecular level is an exciting and innovative area of science. Using these methods to study the structure, dynamics and reactivity of biomacromolecules in solution, computational chemistry is becoming an essential tool, complementing the more traditional methods for structure and reactivity determination. Modelling Molecular Structure and Reactivity in Biological Systems covers three main areas in computational chemistry; structure (conformational and electronic), reactivity and design. Initial sections focus on the link between computational and spectroscopic methods in the investigation of electronic structure. The use of Free Energy calculations for the elucidation of reaction mechanisms in enzymatic systems is also discussed. Subsequent sections focus on drug design and the use of database methods to determine ADME (absorption, distribution, metabolism, excretion) properties. This book provides a complete reference on state of the art computational chemistry practised on biological systems. It is ideal for researchers in the field of computational chemistry interested in its application to biological systems.
This book is an account of current developments in computational
chemistry, a new multidisciplinary area of research. Experts in
computational chemistry, the editors use and develop techniques for
computer-assisted molecular design. The core of the text itself
deals with techniques for computer-assisted molecular design. The
book is suitable for both beginners and experts.
In the 1970s, Density Functional Theory (DFT) was borrowed from physics and adapted to chemistry by a handful of visionaries. Now chemical DFT is a diverse and rapidly growing field, its progress fueled by numerous developing practical descriptors that make DFT as useful as it is vast. With 34 chapters written by 65 eminent scientists from 13 different countries, Chemical Reactivity Theory: A Density Functional View represents the true collaborative spirit and excitement of purpose engendered by the study and use of DFT. This work instructs readers on how concepts from DFT can be used to describe, understand, and predict chemical reactivity. Prior knowledge is not required as early chapters, written by the field's original pioneers, cover basic ground-state DFT and its extensions to time-dependent systems, excited states, and spin-polarized molecules. While the text is accessible to senior undergraduate or beginning graduate students, experienced researchers are certain to find interesting new insights in the perspectives presented by these seasoned experts. This remarkable one-of-a-kind resource- Provides authoritative accounts on aspects of the theory of chemical reactivity Describes various global reactivity descriptors, such as electronegativity, hardness, and electrophilicity Introduces and analyzes the usefulness of local reactivity descriptors such as Fukui, shape, and electron localization functions Offers an in-depth analysis of how chemical reactivity changes during different physicochemical processes or in the presence of external perturbations The book covers a gamut of related topics such as methods for determining atoms-in-molecules, population analysis, electrostatic potential, molecular quantum similarity, aromaticity, and biological activity. It also discusses the role of reactivity concepts in industrial and other practical applications. Whether you are searching for new products or new research projects, this is the ultimate guide for understanding chemical reactivity.
This book cover advances in the study of processes of nonlinear propagation of continuous and pulsed laser radiation in a continuous and micro structured optical media. It details distributed fiber-optical measuring systems, the physical basis of ultra-low laser cooling of atoms, and studies of optical and nonlinear optical properties of nanostructured heterogeneous systems.
Surfactants play a critical role in Tribology controlling friction, wear, and lubricant properties such as emulsification, demulsification, bioresistance, oxidation resistance, rust prevention and corrosion resistance. This is a critical topic for new materials and devices particularly those built at the nanoscale. This newest volume will address tribological properties of cutting fluids, lubricant performance related to steel surfaces, biolubricants, and novel materials and ways to reduce friction and wear. Scientists from industrial research and development (R&D) organizations and academic research teams in Asia, Europe, the Middle East and North America will participate in the work.
The phase behaviour of materials and their thermodynamic properties are a central subject in all fields of materials research. The first Volume of the work, meant for graduate students in chemistry, geology, physics, and metallurgy, and their engineering counterparts, is split up in three levels, such that from level to level the portion and importance of thermodynamics and mathematics are increased. In the ground level it is shown that the basic principles of phase equilibria can be understood without the use of thermodynamics - be it that the concept of chemical potential is introduced right from the beginning. The intermediate level is an introduction to thermodynamics; culminating in the Gibbs energy as the arbiter for equilibrium - demonstrated for systems where the phases in equilibrium are pure substances. In the third level the accent is on binary systems, where one or more phases are solutions of the components...
Since the turn of the 21st century, the field of electron molecule collisions has undergone a renaissance. The importance of such collisions in applications from radiation chemistry to astrochemistry has flowered, and their role in industrial processes such as plasma technology and lighting are vital to the advancement of next generation devices. Furthermore, the development of the scanning tunneling microscope highlights the role of such collisions in the condensed phase, in surface processing, and in the development of nanotechnology. Low-Energy Electron Scattering from Molecules, Biomolecules and Surfaces highlights recent progress in the theory and experiment of electron-molecule collisions, providing a detailed review of the current state of knowledge of electron molecule scattering-theoretical and experimental-for the general physicist and chemist interested in solving practical problems. In few other branches of science is the collaboration between theorists and experimentalists so topical. Covering advancements in practical problems, such as those met in plasma physics, microelectronics, nanolithography, DNA research, atmospheric chemistry, and astrochemistry, this book describes the formal general scattering theory and description of the experimental setup at a level the interested non-expert can appreciate.
The field of isotope effects has expanded exponentially in the last decade, and researchers are finding isotopes increasingly useful in their studies. Bringing literature on the subject up to date, Isotope Effects in Chemistry and Biology covers current principles, methods, and a broad range of applications of isotope effects in the physical, biological, and environmental sciences. The authors first explain how kinetic, equilibrium, and anharmonic isotope effects are used to measure the ratio of reaction rates, the ratio between isotopes in thermodynamic equilibrium, and the geometric changes between molecules. The volume describes basic theories, including gas phase, simple condensed phase, small molecule studies, and applications of the Bigeleisen-Mayer theory before covering how isotopes affect molecular geometries, chemical bond breaking, formation and chemical dynamics, and hydrogen transfer. It explores novel, mass-independent isotope effects and problems encountered in hydrogen transfer, tunneling, and exchange. Authors also discuss isotope effects in organic and organometallic reactions and complex enzyme reactions and a unique chapter explores water isotope effects under pressure. Written by internationally recognized researchers from 13 countries, some chapters summarize the perspective of a well-established subject while others review recent findings and on-going research that occasionally present controversial viewpoints using clear scientific arguments and discussion presented by all relevant authors. Isotope Effects in Chemistry and Biology brings together a wide scope of different perspectives and practical developments and applications into a comprehensive reference ofisotope effects that reflect the most current state of the art.
Silicone is an important class of materials used in applications that range from industrial assembly to everyday consumer products. Silicones are often delivered and synthesized in dispersion forms, the most common being liquid-in-liquid (emulsion), solid-in-liquid (suspension), air-in-liquid (foam) and solid-in air (powder). This book compiles a carefully selected number of topics that are essential to the understanding, creative design and production of silicone dispersions. As such, it provides the first unified description of silicone dispersions in the literature.
Annual Reports on NMR Spectroscopy, Volume 100, is a premier resource for both specialists and non-specialists who are looking to become familiar with new techniques and applications in NMR spectroscopy. Chapters in this new release cover In Operando NMR Studies, Recent Developments in Automotive Differential Analysis of NMR Results, Applications of SIMPSON to NMR Studies of Peptides and Proteins, Recent Developments in NMR Line Shape Analysis, and more.
This book is a collection of invited papers (previously published in special issues of the Journal of Adhesion Science and Technology) written by internationally recognized researchers actively working in the field of plasma surface modification. It provides a current, comprehensive overview of the plasma treatment of polymers. In contrast to plasma polymerization, plasma surface modification reactions do not cause thin-film deposition, and can therefore only modify the surface properties of organic substrates. Plasma surface modifications are fast, efficient methods for improving the adhesion properties and other surface characteristics of a variety of polymeric materials. The focus of this volume is on adhesion phenomena, surface properties and the surface characterization of plasma-treated materials. This book opens with a critical review of the plasma surface modification of polymers for improved adhesion. The remainder of the papers are divided into two sections, one dealing with the characterization of plasma-treated surfaces and the second concerned with various practical applications of plasma-treated surfaces
As global demands for energy and lower carbon emissions rise, developing systems of energy conversion and storage becomes necessary. This book explores how Electrochemical Energy Storage and Conversion (EESC) devices are promising advanced power systems that can directly convert chemical energy in fuel into power, and thereby aid in proposing a solution to the global energy crisis. The book focuses on high-temperature electrochemical devices that have a wide variety of existing and potential applications, including the creation of fuel cells for power generation, production of high-purity hydrogen by electrolysis, high-purity oxygen by membrane separation, and various high-temperature batteries. High-Temperature Electrochemical Energy Conversion and Storage: Fundamentals and Applications provides a comprehensive view of the new technologies in high-temperature electrochemistry. Written in a clear and detailed manner, it is suitable for developers, researchers, or students of any level.
Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.
Increasingly useful in materials research and development, molecular modeling is a method that combines computational chemistry techniques with graphics visualization for simulating and predicting the structure, chemical processes, and properties of materials. Molecular Modeling Techniques in Materials Science explores the impact of using molecular modeling for various simulations in industrial settings. It provides an overview of commonly used methods in atomistic simulation of a broad range of materials, including oxides, superconductors, semiconductors, zeolites, glass, and nanomaterials. The book presents information on how to handle different materials and how to choose an appropriate modeling method or combination of techniques to better predict material behavior and pinpoint effective solutions. Discussing the advantages and disadvantages of various approaches, the authors develop a framework for identifying objectives, defining design parameters, measuring accuracy/accounting for error, validating and assessing various data collected, supporting software needs, and other requirements for planning a modeling project. The book integrates the remarkable developments in computation, such as advanced graphics and faster, cheaper workstations and PCs with new advances in theoretical techniques and numerical algorithms. Molecular Modeling Techniques in Materials Science presents the background and tools for chemists and physicists to perform "in-silico" experiments to understand relationships between the properties of materials and the underlying atomic structure. These insights result in more accurate data for designing application-specific materials that withstand real processconditions, including hot temperatures and high pressures.
In a rare, over-the-shoulder perspective of a leading scientist's own breakthroughs, Clay Swelling and Colloid Stability puts emphasis on two significant paradigm shifts in colloid science that explain particle interactions for charged plates, stacks, suspensions, and pastes as well as spherical colloids. Martin Smalley first discusses the replacement of the DLVO theory with the Coulombic Attraction Theory to explain the existence, extent, and properties of the two-phase region of colloid stability. Using the n-butylammonium vermiculite system as his model clay system, the author clarifies the flaws of conventional theories and presents the experimental details that form the basis of his new theories. He provides rigorous derivations that place the new electrical theory for charged colloids on a firm foundation in statistical mechanics. The author illustrates why a new, quantitative bridging flocculation model for polymer-stabilized colloids must replace the depletion flocculation model. Smalley also examines the discovery of the "dressed macroion" structure of clay plates in solution, the structure of a bridging polymer, and the distribution of polymer segments, counterions, and water molecules in the interlayer region. Based on the author's own research and 36 publications in the field, Clay Swelling and Colloid Stability isa self-contained and intellectually satisfying account of the revolutionary process leading to a universally sound, and increasingly applicable, theory of colloid stability.
This book documents the proceedings of the Second International Symposium on Adhesion Measurement of Films and Coatings, held in Newark, NJ, October 25-27, 1999. Since the First Symposium (Boston 1992) there had been considerable activity in devising new, more reliable and more efficient ways to measure adhesion of films and coatings, which resulted in the decision to organize the Newark Symposium. Films and coatings are used for a variety of purposes aEURO" functional, decorative, protective, etc. aEURO" in a host of applications. Irrespective of the purpose or application of a film or a coating, their adequate adhesion to the underlying substrates is of paramount importance. Concomitantly, the need to develop techniques for quantitative assessment of adhesion of films and coatings is all too obvious. This volume contains a total of 20 papers, which have all been rigorously peer reviewed and suitably modified before inclusion. The topics include: measurement and analysis of interface adhesion; relative adhesion measurement for thin film structures; adhesion testing of hard coatings by a variety of techniques; challenges and new directions in scratch adhesion testing of coated substrates; application of scratch test to different films and coatings; evaluation of coating-substrate adhesion by indentation experiments; measurement of interfacial fracture energy in multifilm applications; laser induced decohesion spectroscopy (LIDS) for measuring adhesion; pulsed laser technique for assessment of adhesion; blade adhesion test; JKR adhesion test; coefficient of thermal expansion measurement; and residual stresses in diamond films. This volume, providing the latest information, will be of great value and interest to anyone working in the area of adhesion measurement of films and coatings.
Handbook of Antioxidants provides a wealth of information on the mechanics, practical effects and applications of a wide range of antioxidants. The book starts by introducing the general concepts relating to antioxidants and their application, then segues into a discussion on existing natural and synthetic antioxidants, characterizing their general properties and application. Formation and action of oxidizing species in living organisms, ambient air, industrial environments, and chemical reactions are covered next. Subsequent chapters cover the theories and mechanisms of stabilization, performance indicators, antioxidant selection, degradation and stabilization of different polymers and rubbers, specific effects on other components of formulation, and analytical methods. This book is an excellent companion to the Databook of Antioxidants which has also been published recently. Both books supplement each other without repeating the same information - one contains data another theory, mechanisms of action, practical effects and implications of application.
Introduction to Liquid Crystals: Chemistry and Physics, Second Edition relies on only introductory level chemistry and physics as the foundation for understanding liquid crystal science. Liquid crystals combine the material properties of solids with the flow properties of fluids. As such they have provided the foundation for a revolution in low-power, flat-panel display technology (LCDs). In this book, the essential elements of liquid crystal science are introduced and explained from the perspectives of both the chemist and physicist. This new edition relies on only introductory level physics and chemistry as the foundation for understanding liquid crystal science and is, therefore, ideal for students and recent graduates. Features Introduces and explains the essential elements of liquid crystal science, including discussion of how liquid crystals have been utilized for innovative and important applications. New to this edition are over 300 figures, 90 end-of chapter exercises, and an increased scope that includes recent developments. Combines the knowledge of two eminent scientists in the field; they have fully updated and expanded the text to cover undergraduate/graduate course work as well as current research in what is now a billion-dollar industry. Immerses the reader in the vocabulary, structures, data, and kinetic models, rapidly building up an understanding of the theories and models in current use. Begins with a historical account of the discovery of liquid crystals and continues with a description of how different phases are generated and how different molecular architectures affect liquid crystal properties.
This is the fourth volume in the Reviews in Fluorescence series. To date, three volumes have been both published and well received by the scienti c community. Several book reviews in the last few years have also favorably remarked on the series. In this fourth volume we continue the tradition of publishing leading edge and timely articles from authors around the world. We thank the authors for their timely and exciting contributions. We hope you nd this volume as useful as past volumes, which promises to be just as diverse with regard to uorescence-based content. Finally, in closing, I would like to thank to Aaron Johnson, formerly at Springer, for helping me to publish this book serial over the last four volumes. Thanks also go to Michael Weston at Springer for help in publishing this current volume. Baltimore, Maryland Chris D. Geddes v Contents Simple Calibration and Validation Standards for Fluorometry ...1 Ute Resch-Genger, Katrin Hoffmann, and Dietmar Pfeifer Membranes and Fluorescence Microscopy...33 Luis A. Bagatolli Electronic Energy Transport and Fluorescence Spectroscopy for Structural Insights into Proteins, Regular Protein Aggregates and Lipid Systems ...53 ? ? Therese Mikaelsson, Radek Sachl, and Lennart B. -A. Johansson Spectra FRET: A Fluorescence Resonance Energy Transfer Method in Live Cells...87 Ekaterina A. Bykova and Jie Zheng Boronic Acid Based Modular Fluorescent Saccharide Sensors...103 John S. Fossey and Tony D. James Fluorescence Solvent Relaxation in Cationic Membranes ... |
You may like...
The Queen of Naples and Lord Nelson - an…
John Cordy Jeaffreson
Paperback
R570
Discovery Miles 5 700
|