![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
The use of single crystals for scientific and technological applications is now widespread in solid-state physics, optics, electronics, materials science, and geophysics. An understanding of the variation of physical properties with crystalline direction is essential to maximize the performance of solid-state devices. Written from a physical viewpoint and avoiding advanced mathematics, Tensor Properties of Crystals provides a concise introduction to the tensor properties of crystals at a level suitable for advanced undergraduate and graduate students. While retaining the successful basic format of the well-known first edition, this second edition brings the material up to date with the latest developments in nonlinear optics and modulated structures. Because of the increasing importance of nonlinear optics, a new chapter on optoelectronics has been added. This edition also includes a short discussion on incommensurate modulated structures in the final chapter because they are relevant to high temperature superconductors and to ferroelectric and ferromagnetic materials. The book extensively contains diagrams, worked examples, and problems with answers throughout.
Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory-two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The algorithmic aspects of transformations-compression, expansion, cyclic, and more The principles of best-practice programming How molecules transmit and modify information via collisions and chemical reactions Using examples from physical and organic chemistry, this book demonstrates how the disciplines of thermodynamics and information theory are intertwined. Accessible to curiosity-driven chemists with knowledge of basic calculus, probability, and statistics, the book provides a fresh perspective on time-honored subjects such as state transformations, heat and work exchanges, and chemical reactions.
Support vector machines (SVMs) are used in a range of applications, including drug design, food quality control, metabolic fingerprint analysis, and microarray data-based cancer classification. While most mathematicians are well-versed in the distinctive features and empirical performance of SVMs, many chemists and biologists are not as familiar with what they are and how they work. Presenting a clear bridge between theory and application, Support Vector Machines and Their Application in Chemistry and Biotechnology provides a thorough description of the mechanism of SVMs from the point of view of chemists and biologists, enabling them to solve difficult problems with the help of these powerful tools. Topics discussed include: Background and key elements of support vector machines and applications in chemistry and biotechnology Elements and algorithms of support vector classification (SVC) and support vector regression (SVR) machines, along with discussion of simulated datasets The kernel function for solving nonlinear problems by using a simple linear transformation method Ensemble learning of support vector machines Applications of support vector machines to near-infrared data Support vector machines and quantitative structure-activity/property relationship (QSAR/QSPR) Quality control of traditional Chinese medicine by means of the chromatography fingerprint technique The use of support vector machines in exploring the biological data produced in OMICS study Beneficial for chemical data analysis and the modeling of complex physic-chemical and biological systems, support vector machines show promise in a myriad of areas. This book enables non-mathematicians to understand the potential of SVMs and utilize them in a host of applications.
Hundreds of lubricant additives are available industry-wide to improve base stock properties and protect metal surfaces; however, the wrong combination of these commodities can result in substandard performance. Surface Activity of Petroleum Derived Lubricants explains how surface activity is affected by several factors: the interfacial properties of lube oil base stocks at oil/surface interfaces, lubricant solvency properties, additive interactions, and variations in temperature. The book provides an understanding of these factors that will influence proper selection of base stocks and additives necessary for resisting foaming and air entrainment, inhibiting rust and corrosion, preventing wear, and controlling emulsification and demulsification. Using 300 tables to provide experimental data from books, journals, and the patent literature, this practical and comprehensive reference examines: the refining of lube oil base stocks the chemistry of additives the formulation technology of lubricants the performance of the most important finished products such as turbine oils, hydraulic fluids, and engine oils Insight into these variables enables petroleum chemists and engineers to choose the right lubricant base stock and additive combination. By becoming aware of these important elements, those in industry are better able to make the right choices, leading to reduced costs, improved performance, and better management of production timelines.
Charge Transport in Organic Semiconductors, by Heinz Bassler and Anna Kohler. Frontiers of Organic Conductors and Superconductors, by Gunzi Saito and Yukihiro Yoshida. Fullerenes, Carbon Nanotubes, and Graphene for Molecular Electronics, by Julio R. Pinzon, Adrian Villalta-Cerdas and Luis Echegoyen. Current Challenges in Organic Photovoltaic Solar Energy Conversion, by Cody W. Schlenker and Mark E. Thompson.- Molecular Monolayers as Semiconducting Channels in Field Effect Transistors, by Cherie R. Kagan. Issues and Challenges in Vapor-Deposited Top Metal Contacts for Molecule-Based Electronic Devices, by Masato M. Maitani and David L. Allara. Spin Polarized Electron Tunneling and Magnetoresistance in Molecular Junctions, by Greg Szulczewski."
Revising, updating and expanding information on developments since the late 1980s, the second edition of this work presents practical, fundamental material on interfacial electric phenomena in acqueous and nonaqueous systems, as well as their relation to colloid stability. The book includes 15 additional chapters that reflect collaborative efforts with new experts in the field.
Hailed by advance reviewers as "a kinder, gentler P. Chem. text," this book meets the needs of a full-year course in physical chemistry. It is an ideal choice for classes geared toward pre-medical and life sciences students. Or, as stated in a May 2001 review in Journal of Chemical Education, "this text meets these students where they are and opens the door to physical chemistry from a perspective they can appreciate." Physical Chemistry for the Chemical and Biological Sciences offers a wealth of applications to chemical and biological problems, numerous chapter-ending exercises, and an accompanying solutions manual. Well known for his clear writing and careful pedagogical approach, Raymond Chang has developed yet another masterpiece in chemical education. Key Features a student-oriented, highly readable text traditional and flexible organization a functional and pleasing two-color format many worked examples in text 1000 chapter-ending problems an overview of key equations in each chapter a glossary of key terms answers provided to even-numbered computational problems
A text- and exercise book for physical chemistry students! This book deals with the fundamental aspects of physical chemistry taught at the undergraduate level in chemistry and the engineering sciences in a compact and practice-oriented form. Numerous problems and detailed solutions offer the possibility of an in-depth reflection of topics like chemical thermodynamics and kinetics, atomic structure and spectroscopy. Every chapter starts with a recapitulation of important background information, before leading over to representative exercises and problems. Detailed descriptions systematically present and explain the solutions to the problems, so that readers can carefully check their own solutions and get clear-cut introductions on how to approach similar problems systematically. The book addresses students at the (upper) undergraduate level, as well as tutors and teachers. It is a rich source of exercises for exam preparation and can be used alongside classical textbooks. Furthermore it can serve teachers and tutors for the conception of their lessons. Its well-thought-through presentation, structure and design make the book appeal to everybody who wants to succeed with the physical chemistry lessons and exercises.
Due to its interdisciplinary nature, crystallography is of major importance to a wide range of scientific disciplines including physics, chemistry, molecular biology, materials science and mineralogy. However, information is currently divided amongst traditional physics, chemistry and materials science books. This book collates previously disparate literature into one comprehensive and practical source, providing a thorough understanding of the information contained in crystallographic data files and the application of x-ray diffraction methods. The book has been written for final year and postgraduate students.
* Physical chemists will find this book comprehensive. Topical
reviews on all aspects of colloidal ordering and related phase
transitions will be covered. It provides a good blend of
experimental and theoretical investigations.
Complex Systems are natural systems that science is unable to describe exhaustively. Examples of Complex Systems are both unicellular and multicellular living beings; human brains; human immune systems; ecosystems; human societies; the global economy; the climate and geology of our planet. This book is an account of a marvelous interdisciplinary journey the author made to understand properties of the Complex Systems. He has undertaken his trip, equipped with the fundamental principles of physical chemistry, in particular, the Second Law of Thermodynamics that describes the spontaneous evolution of our universe, and the tools of Non-linear dynamics. By dealing with many disciplines, in particular, chemistry, biology, physics, economy, and philosophy, the author demonstrates that Complex Systems are intertwined networks, working in out-of-equilibrium conditions, which exhibit emergent properties, such as self-organization phenomena and chaotic behaviors in time and space.
"Introduction to Theoretical Organic Chemistry" provides an
introduction for chemists with a limited mathematical background,
yet need a working understanding of quantum chemistry as applied to
problems in organic chemistry. This book is unique in that it is
written at the level of the advanced undergraduate or beginning
graduate student in organic chemistry, whose exposure to
theoretical chemistry is relatively recent. It fills a niche in
that most books on theoretical organic chemistry are written by
theoretical or computational chemists, whereas this book is written
by an organic chemist.
This book cover advances in the study of processes of nonlinear propagation of continuous and pulsed laser radiation in a continuous and micro structured optical media. It details distributed fiber-optical measuring systems, the physical basis of ultra-low laser cooling of atoms, and studies of optical and nonlinear optical properties of nanostructured heterogeneous systems.
Practical Dispersion A Guide to Understanding and Formulating Slurries Robert F. Conley This book is a practical guide to producing slurries more efficiently, intelligently, and economically. It provides hands--on knowledge of sufficient technical depth to allow those personnel involved in on--going dispersion practices to feel more proficient in making system modifications, as well as to meet the specific mechanical, chemical, environmental, and other requirements of their customers. To this end, a broad description of dispersants, their functions, and field applications has been provided. Dispersant activities are defined on the basis of solid and agent structures and affinities. This book is intended for technical personnel in the many industries involved with slurry processing either in materials production or application, and whose day--to--day activities lie in manufacturing such dispersed products as paints; pigment premixes; treated metallic, inorganic, and organic powders; food products; cosmetics; pharmaceuticals; and dyes and inks.
Discusses the laboratory and industrial synthesis of nonionic surfactants. Furnishes exhaustive coverage of the most recent advances in nonionic surfactant organic chemistry. Analyzes a novel class of catalysts for the production of surfactants with highly narrow distributions.
Photochromic glasses are among the most widespread types of glasses, due largely to their popular use in sunglasses. These glasses are used not only in sunglasses, but also in various opto-electronic devices that have been developed and produced throughout the world. Until now, information about photochromic glasses has been widely dispersed in the literature, much of which was published in Russian and therefore of limited accessibility to the Western world. Physics and Chemistry of Photochromic Glasses brings together the combined knowledge and understanding of photochromic glasses from these publications. Coverage includes the structure, optical properties, coloration and bleaching mechanisms, technology, and metrology of these interesting materials.
The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.
Volume 5 Reviews in Computational Chemistry Kenny B. Lipkowitz and Donald B. Boyd A Valuable Resource for Novices and Practitioners Alike, This Series Features Detailed Treatments of the Latest Advances in Computational Methods for Organic, Pharmaceutical, Physical, and Biological Chemistry. Balancing Academic and Industrial Interests, Volume 5 Presents Tutorials on Post-Hartree-Fock Methods, Electron Population Analysis, Brownian Dynamics, Lipid Simulations, Distance Geometry in Molecular Modeling, and Computer-Aided Drug Design. A History Traces the Field's Growth and Relationship to Funding Agencies. An Enlarged Compendium of Software Serves As a Valuable Buyer's guide. -From Reviews of the Series Many of the Articles are Indeed Accessible to any Interested Nonspecialist, Even Without Theoretical Background. Journal of the American Chemical Society This Book Serves Beginners as Well as Experts Looking for New Perspectives in the Field and is Highly Recommended. Journal of Molecular Graphics
The dissolution behaviour of metal oxides has applications in many scientific fields, each with its own jargon and methodological approach. Any scientist interested in this subject should understand the literature from these various areas. This book describe different specialized treatments to surface-controlled metal oxide dissolution reactions and translates them into a unified picture based on surface complexion
"Second Edition provides a thorough, up-to-date treatment of the fundamental behavior of surface active agents in solutions, their interaction with biological structures from proteins and membranes to the stratum corneum and epidermis, and their performance in formulations such as shampoos, dentifrice, aerosols, and skin cleansers."
Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas-liquid interfaces are all around us, especially within atmospheric systems such as sea spry aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments.
Because water is one of the most important life-supporting media on the planet, the quality of aquatic ecosystems is of great interest to the entire world population. One of the factors that greatly affects water quality is the condition of the underlying sediment layer. The Manual of Physico-Chemical Analysis of Aquatic Sediments addresses the best methods for quantitative determination of chemical forms of different elements and compounds, bioassessment techniques, and determination of physical properties of sediments. Essential information for surveying, research, and monitoring of sediment contamination is covered. This manual will aid sediment biologists, geochemists, limnologists, regulatory program managers, environmental chemists and toxicologists and environmental consultants in preparing plans for proper remedial action.
During the past decade there has been a phenomenal growth in the basic research of semiconductor nanoclusters and other nanomaterials. As the field has evolved the emphasis has shifted from basic theoretical description to field utilization of nanostructure-based devices. The topics of the various chapters presented in this book, written by leaders in the field, highlight the salient features of nanocrystalline semiconductor materials. Features of this book: - Provides synthetic strategies to generate ultrasmall particles, films and wires - Describes the characterization methodologies of a large number of nanomaterials from the molecular level to the long-range crystallographic ordering - Develops theoretical descriptions of present-day quantum confinement effects in various materials, including metallic particles, III-V semiconductors, and porous silicon - Explores the fate of photoinduced charge carriers in these materials and the phenomena of charge transfer across interfaces - Covers the utilization of these newly discovered effects in analytical chemistry, organic synthesis, environmental remediation, and electrochemistry. The aim of the book is to present the necessary background material for advanced undergraduate students in the field of physical chemistry and materials science and provide a reference book for the experts in this area.
This book develops the thesis that structure and function in a variety of condensed systems - from the atomic assemblies in inorganic frameworks and organic molecules, through molecular self-assemblies to proteins - can be unified when curvature and surface geometry are taken together with molecular shape and forces. An astonishing variety of synthetic and biological assemblies can be accurately modelled and understood in terms of hyperbolic surfaces, whose richness and beauty are only now being revealed by applied mathematicians, physicists, chemists and crystallographers. These surfaces, often close to periodic minimal surfaces, weave and twist through space, carving out interconnected labyrinths whose range of topologies and symmetries challenge the imaginative powers. The book offers an overview of these structures and structural transformations, convincingly demonstrating their ubiquity in covalent frameworks from zeolites used for cracking oil and pollution control to enzymes and structural proteins, thermotropic and lyotropic bicontinuous mesophases formed by surfactants, detergents and lipids, synthetic block copolymer and protein networks, as well as biological cell assemblies, from muscles to membranes in prokaryotic and eukaryotic cells. The relation between structure and function is analysed in terms of the previously neglected hidden variables of curvature and topology. Thus, the catalytic activity of zeolites and enzymes, the superior material properties of interpenetrating networks in microstructured polymer composites, the transport requirements in cells, the transmission of nerve signals and the folding of DNA can be more easily understood in the light of this. The text is liberally sprinkled with figures and colour plates, making it accessible to both the beginning graduate student and researchers in condensed matter physics and chemistry, mineralogists, crystallographers and biologists.
Since Pasteur in 1846, scientists have been aware that many drugs are photoreactive, but until recently research in this area had been somewhat limited. However, since the introduction of acutely sensitive analytical methods, the realisation of the need to identify the photochemical properties of a potential drug as early in its development as possible and the increased attention to the phototoxic effect of drugs, more details are becoming available. Drugs: Photochemistry and Photostability presents the basic elements of the science, and serves as an excellent introduction to this emerging field of photochemistry. Detailed experimental conditions for photostability studies are given, along with a discussion of the recently implemented ICH Guidelines for drug photostability. With contributions from international experts in the field and including a comprehensive literature review, this book provides all the up-to-date information needed by researchers in many fields, especially medicinal and pharmaceutical chemistry. |
![]() ![]() You may like...
Emotion Recognition and Understanding…
Luefeng Chen, Min Wu, …
Hardcover
R4,928
Discovery Miles 49 280
New Development in Robot Vision
Yu Sun, Aman Behal, …
Hardcover
Ontology-Based Applications for…
Mohammad Nazir Ahmad, Robert M Colomb, …
Hardcover
R4,872
Discovery Miles 48 720
Jump into JMP Scripting, Second Edition…
Wendy Murphrey, Rosemary Lucas
Hardcover
R1,654
Discovery Miles 16 540
Acoustics: Sound Fields, Transducers and…
Leo Beranek, Tim Mellow
Paperback
Quantitative statistical techniques
Swanepoel Swanepoel, Vivier Vivier, …
Paperback
![]()
|