![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
The use of single crystals for scientific and technological
applications is now widespread in solid-state physics, optics,
electronics, materials science, and geophysics. An understanding of
the variation of physical properties with crystalline direction is
essential to maximize the performance of solid-state devices.
There have been many developments in anaesthesia since Joseph Priestley discovered nitrous oxide. Covering new anaesthetics, the molecular and cellular mechanisms of anaesthesia and the non-hypnotic effects of anaesthetics and other medical gases, Gases in Medicine combines reviews of current research from both academic and clinical perspectives and provides an historical framework in which this research may be placed. Encompassing a wide range of topics including intravenous anaesthetics, neural processes and the 1997 Priestley Lecture on nitric oxide, this book offers an accessible summary of anaesthesia along with the current best research. Also included is the BOC Centenary Lecture, which gives a perspective on anaesthesia for the 21st century. This book will be welcomed by readers in academia and medicine as an illustration of the diversity of research into anaesthesia and the associated history of this fascinating subject.
Since Pasteur in 1846, scientists have been aware that many drugs are photoreactive, but until recently research in this area had been somewhat limited. However, since the introduction of acutely sensitive analytical methods, the realisation of the need to identify the photochemical properties of a potential drug as early in its development as possible and the increased attention to the phototoxic effect of drugs, more details are becoming available. Drugs: Photochemistry and Photostability presents the basic elements of the science, and serves as an excellent introduction to this emerging field of photochemistry. Detailed experimental conditions for photostability studies are given, along with a discussion of the recently implemented ICH Guidelines for drug photostability. With contributions from international experts in the field and including a comprehensive literature review, this book provides all the up-to-date information needed by researchers in many fields, especially medicinal and pharmaceutical chemistry.
Due to its interdisciplinary nature, crystallography is of major importance to a wide range of scientific disciplines including physics, chemistry, molecular biology, materials science and mineralogy. However, information is currently divided amongst traditional physics, chemistry and materials science books. This book collates previously disparate literature into one comprehensive and practical source, providing a thorough understanding of the information contained in crystallographic data files and the application of x-ray diffraction methods. The book has been written for final year and postgraduate students.
Juvenile hormones (JHs) are a group of structurally related sesquiterpenes secreted by the insect corpora allata. They affect most insect life-cycle stages and physiological functions, including embryogenesis, larval and adult development, metamorphosis, reproduction, metabolism, diapause, polyethism, and migration. Juvenoids such as methoprene, hydroprene, kinoprene, pyriproxyfen, and fenoxycarb are man-made chemicals that mimic the structure and/or activity of JHs, selectively targeting and disrupting the endocrine system of insects. They are particularly suited as larvicides for the control of pest and disease vectoring insects such as mosquitoes. Juvenile Hormones and Juvenoids: Modeling Biological Effects and Environmental Fate discusses the various modeling approaches that can be used to study the mechanism of action of JHs in insects and to estimate the adverse effects and the environmental fate of the juvenoids that mimic their activity. This book is the third of the QSAR in Environmental and Health Sciences series, but the first dedicated to the use of QSAR and other in silico techniques to provide these insights into JHs and their analogs. With contributions by an international team of scientists, the book begins with a historical survey of JHs and juvenoids. It then discusses biosynthesis of sesquiterpenoids followed by chapters covering JH activity such as morph-specific JH titers in crickets, and JH analog activity including soldier-specific organ development in termites and the role of methoprene in gene transcription. The book examines modeling approaches applied to resistance to JH analogs, to population dynamics of nontarget species in the presence of juvenoids, and to SAR and QSAR of JH mimics. The book concludes with a discussion on the use of multicriteria analysis for selecting insecticides for vector control.
Photochromic glasses are among the most widespread types of glasses, due largely to their popular use in sunglasses. These glasses are used not only in sunglasses, but also in various opto-electronic devices that have been developed and produced throughout the world. Until now, information about photochromic glasses has been widely dispersed in the literature, much of which was published in Russian and therefore of limited accessibility to the Western world. Physics and Chemistry of Photochromic Glasses brings together the combined knowledge and understanding of photochromic glasses from these publications. Coverage includes the structure, optical properties, coloration and bleaching mechanisms, technology, and metrology of these interesting materials.
Practical Dispersion A Guide to Understanding and Formulating Slurries Robert F. Conley This book is a practical guide to producing slurries more efficiently, intelligently, and economically. It provides hands--on knowledge of sufficient technical depth to allow those personnel involved in on--going dispersion practices to feel more proficient in making system modifications, as well as to meet the specific mechanical, chemical, environmental, and other requirements of their customers. To this end, a broad description of dispersants, their functions, and field applications has been provided. Dispersant activities are defined on the basis of solid and agent structures and affinities. This book is intended for technical personnel in the many industries involved with slurry processing either in materials production or application, and whose day--to--day activities lie in manufacturing such dispersed products as paints; pigment premixes; treated metallic, inorganic, and organic powders; food products; cosmetics; pharmaceuticals; and dyes and inks.
* Physical chemists will find this book comprehensive. Topical
reviews on all aspects of colloidal ordering and related phase
transitions will be covered. It provides a good blend of
experimental and theoretical investigations.
Discusses the laboratory and industrial synthesis of nonionic surfactants. Furnishes exhaustive coverage of the most recent advances in nonionic surfactant organic chemistry. Analyzes a novel class of catalysts for the production of surfactants with highly narrow distributions.
"Introduction to Theoretical Organic Chemistry" provides an
introduction for chemists with a limited mathematical background,
yet need a working understanding of quantum chemistry as applied to
problems in organic chemistry. This book is unique in that it is
written at the level of the advanced undergraduate or beginning
graduate student in organic chemistry, whose exposure to
theoretical chemistry is relatively recent. It fills a niche in
that most books on theoretical organic chemistry are written by
theoretical or computational chemists, whereas this book is written
by an organic chemist.
The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.
A Working Method Approach for Introductory Physical Chemistry Calculations is a concise inexpensive introduction to first year chemistry that is aimed at students who are weak in chemistry or have no chemistry on entry to university. Such students usually find physical chemistry the most difficult part of the chemistry course, and within this section numerical problem solving is an additional difficulty. The text should also be invaluable to first year intending chemists. This text provides an introduction to physical chemistry and the gas laws, followed by chapters on thermodynamics, chemical equilibrium, electrochemistry and chemical kinetics. Each section involves a brief introduction followed by a representative examination question, which is broken down into a proposed working method. Both short multiple-choice questions and related full examination-type questions are included. This book will prove invaluable to students who need encouragement in a logical approach to problem solving in physical chemistry, teaching them to think for themselves when faced with a problem.
Volume 5 Reviews in Computational Chemistry Kenny B. Lipkowitz and Donald B. Boyd A Valuable Resource for Novices and Practitioners Alike, This Series Features Detailed Treatments of the Latest Advances in Computational Methods for Organic, Pharmaceutical, Physical, and Biological Chemistry. Balancing Academic and Industrial Interests, Volume 5 Presents Tutorials on Post-Hartree-Fock Methods, Electron Population Analysis, Brownian Dynamics, Lipid Simulations, Distance Geometry in Molecular Modeling, and Computer-Aided Drug Design. A History Traces the Field's Growth and Relationship to Funding Agencies. An Enlarged Compendium of Software Serves As a Valuable Buyer's guide. -From Reviews of the Series Many of the Articles are Indeed Accessible to any Interested Nonspecialist, Even Without Theoretical Background. Journal of the American Chemical Society This Book Serves Beginners as Well as Experts Looking for New Perspectives in the Field and is Highly Recommended. Journal of Molecular Graphics
Bees are critically important for ecosystem function and biodiversity maintenance through their pollinating activity. Unfortunately, bee populations are faced with many threats, and evidence of a massive global pollination crisis is steadily growing. As a result, there is a need to understand and, ideally, predict how bees respond to pollution disturbance, to the changes over landscape gradients, and how their responses can vary in different habitats, which are influenced to different degrees by human activities. Modeling approaches are useful to simulate the behavior of whole population dynamics as well as to focus on important phenomena detrimental to bee-life history traits. They also allow simulation of how a disease or a pesticide can impact the survival and growth of a bee population. In Silico Bees provides a collection of computational methods to those primarily interested in the study of the ecology, ethology, and ecotoxicology of bees. The book presents different cases studies to enable readers to understand the significance and also the limitations of models in theoretical and applied bee research. The text covers modeling of honey bee society organization, infectious diseases in colonies, pesticide toxicity, chemical contamination of the hive, and more. Written by an international team of scientists, this book is of primary interest to those whose research or professional activity is directly concerned with the study of bees. It is also intended to provide graduate and post-graduate students with a clear and accessible text covering the main types of modeling approaches that can be used in terrestrial ecology and ecotoxicology.
"Second Edition provides a thorough, up-to-date treatment of the fundamental behavior of surface active agents in solutions, their interaction with biological structures from proteins and membranes to the stratum corneum and epidermis, and their performance in formulations such as shampoos, dentifrice, aerosols, and skin cleansers."
Written by two leading experts in the field, this book explores the 'many-body' methods that have become the dominant approach in determining molecular structure, properties and interactions. With a tight focus on the highly popular Many-Body Perturbation Theory (MBPT) and Coupled-Cluster theories (CC), the authors present a simple, clear, unified approach to describe the mathematical tools and diagrammatic techniques employed. Using this book the reader will be able to understand, derive and confidently implement relevant algebraic equations for current and even new multi-reference CC methods. Hundreds of diagrams throughout the book enhance reader understanding through visualization of computational procedures and extensive referencing allows further exploration of this evolving area. With an extensive bibliography and detailed index, this book will be suitable for graduates and researchers within quantum chemistry, chemical physics and atomic, molecular and solid-state physics.
Because water is one of the most important life-supporting media on the planet, the quality of aquatic ecosystems is of great interest to the entire world population. One of the factors that greatly affects water quality is the condition of the underlying sediment layer. The Manual of Physico-Chemical Analysis of Aquatic Sediments addresses the best methods for quantitative determination of chemical forms of different elements and compounds, bioassessment techniques, and determination of physical properties of sediments. Essential information for surveying, research, and monitoring of sediment contamination is covered. This manual will aid sediment biologists, geochemists, limnologists, regulatory program managers, environmental chemists and toxicologists and environmental consultants in preparing plans for proper remedial action.
Over the last decade, increased attention to reaction dynamics, combined with the intensive application of computers in chemical studies, mathematical modeling of chemical processes, and mechanistic studies has brought graph theory to the forefront of research. It offers an advanced and powerful formalism for the description of chemical reactions and their intrinsic reaction mechanisms. Chemical Reaction Networks: A Graph-Theoretical Approach elegantly reviews and expands upon graph theory as applied to mechanistic theory, chemical kinetics, and catalysis. The authors explore various graph-theoretical approaches to canonical representation, numbering, and coding of elementary steps and chemical reaction mechanisms, the analysis of their topological structure, the complexity estimation, and classification of reaction mechanisms. They discuss topologically distinctive features of multiroute catalytic and noncatalytic and chain reactions involving metal complexes. With it's careful balance of clear language and mathematical rigor, the presentation of the authors' significant original work, and emphasis on practical applications and examples, Chemical Reaction Networks: A Graph Theoretical Approach is both an outstanding reference and valuable tool for chemical research.
Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas-liquid interfaces are all around us, especially within atmospheric systems such as sea spry aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments.
Update your knowledge of the chemical, biological, and physical properties of liquid-liquid interfaces with Liquid-Liquid Interfaces: Theory and Methods. This valuable reference presents a broadly based account of current research in liquid-liquid interfaces and is ideal for researchers, teachers, and students. Internationally recognized investigators of electrochemical, biological, and photochemical effects in interfacial phenomena share their own research results and extensively review the results of others working in their area. Because of its unusually wide breadth, this book has something for everyone interested in liquid-liquid interfaces. Topics include interfacial and phase transfer catalysis, electrochemistry and colloidal chemistry, ion and electron transport processes, molecular dynamics, electroanalysis, liquid membranes, emulsions, pharmacology, and artificial photosynthesis. Enlightening discussions explore biotechnological applications, such as drug delivery, separation and purification of nuclear waste, catalysis, mineral extraction processes, and the manufacturing of biosensors and ion-selective electrodes. Liquid-Liquid Interfaces: Theory and Methods is a well-written, informative, one-stop resource that will save you time and energy in your search for the latest information on liquid-liquid interfaces.
Complex Systems are natural systems that science is unable to describe exhaustively. Examples of Complex Systems are both unicellular and multicellular living beings; human brains; human immune systems; ecosystems; human societies; the global economy; the climate and geology of our planet. This book is an account of a marvelous interdisciplinary journey the author made to understand properties of the Complex Systems. He has undertaken his trip, equipped with the fundamental principles of physical chemistry, in particular, the Second Law of Thermodynamics that describes the spontaneous evolution of our universe, and the tools of Non-linear dynamics. By dealing with many disciplines, in particular, chemistry, biology, physics, economy, and philosophy, the author demonstrates that Complex Systems are intertwined networks, working in out-of-equilibrium conditions, which exhibit emergent properties, such as self-organization phenomena and chaotic behaviors in time and space.
Aquatic and Surface Photochemistry provides a broad overview of current research in the emerging field of environmental aquatic and surface photochemistry. Selected reviews and current research articles are blended to provide an in-depth treatment of various aspects of this research area. The first part of the text deals with photochemistry in the environment, covering recent research on the following topics: aquatic photochemistry of organic pollutants and agrochemicals, photochemical cycling of carbon and transition metals (especially iron), photochemical formation of reactive oxygen species in natural waters, photoreaction in cloud and rain droplets, and photoreactions on environmental surfaces (soil, ash, metal, oxide). The second part provides discussions and data on both heterogeneous photocatalytic and homogeneous processes, with topics ranging from applications to mechanistic studies. These chapters illustrate the wide diversity of pollutant classes that are degradable by photochemical techniques and the effects of various reaction conditions on the rates and efficiency of the techniques. Current kinetic studies are presented, which provide new information about the role of adsorption and the nature of the reactive oxidizing species that mediate these photoremediation processes.This book will interest civil, chemical, and environmental engineers, as well as chemists, soil scientists, geochemists, and atmospheric chemists.
The common perception is that nanoscience is something entirely new, that it sprung forth whole and fully formed like some mythological deity. But the truth is that like all things scientific, nanoscience is the natural result of the long evolution of scientific inquiry. Following a historical trail back to the middle of the 19th century, nanoscience is the inborn property of colloid and interface science. What's important today is for us to recognize that nanoparticles are small colloidal objects. It should also be appreciated that over the past decades, a number of novel nanostructures have been developed, but whatever we call them, we cannot forget that their properties and behavior are still in the realm of colloid and interface science. However one views it, the interest and funding in nano-science is a tremendous opportunity to advance critical research in colloid chemistry. Nanoscience: Colloidal and Interfacial Aspects brings together a prominent roster of 42 leading investigators and their teams, who detail the wide range of theoretical and experimental knowledge that can be successfully applied for investigating nanosystems, many of which are actually well-known colloidal systems. This international grouping of pioneering investigators from academia and industry use these pages to provide researchers of today and tomorrow with a full examination of nano-disperse colloids, homogeneous and heterogeneous nano-structured materials (and their properties), and shelf-organization at the nano-scale. This cutting-edge reference provides information on investigations into non-linear electrokinetic phenomena in nano-sized dispersions and nano-sized biological systems. It discusses application aspects of technological processes in great detail, providing scientists and engineers across all fields with authoritative commentary on colloid and interface science operating at the nanoscale. Nano-Science: Colloidal and Interfacial Aspects provides an authoritative resource for those wanting to familiarize themselves with current progress as well as for those looking to make their own impact on the development of new technologies and practical applications in fields as diverse as medicine, materials, and environmental science to name but a few. Whether you call the technology nano or colloids, the field continues to be ripe with opportunity.
As global demands for energy and lower carbon emissions rise, developing systems of energy conversion and storage becomes necessary. This book explores how Electrochemical Energy Storage and Conversion (EESC) devices are promising advanced power systems that can directly convert chemical energy in fuel into power, and thereby aid in proposing a solution to the global energy crisis. The book focuses on high-temperature electrochemical devices that have a wide variety of existing and potential applications, including the creation of fuel cells for power generation, production of high-purity hydrogen by electrolysis, high-purity oxygen by membrane separation, and various high-temperature batteries. High-Temperature Electrochemical Energy Conversion and Storage: Fundamentals and Applications provides a comprehensive view of the new technologies in high-temperature electrochemistry. Written in a clear and detailed manner, it is suitable for developers, researchers, or students of any level.
The Ion Exchange and Solvent Extraction series treats ion exchange and solvent extraction both as discrete topics and as a unified, multidisciplinary study - presenting new insights for researchers in many chemical and related fields.;Volume 12 contains coverage of: the nature of metal-ion interaction with oppositely charged sites of ion exchangers; high-pressure ion exchange separation of rare earth elements; the commercial recovery of valuable minerals from seawater and brines by ion exchange and sorption; the kinetics of ion exchange in heterogenous systems; the ion-exchange equilibria of amino acids; and more.;The work is intended for analytical, co-ordination, process, separation, surface, organic, inorganic, physical and environmental chemists, geochemists, electrochemists, radiochemists, biochemists, biophysicists, hydrometallurgists, membrane researchers and chemical engineers. |
You may like...
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,835
Discovery Miles 48 350
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,459
Discovery Miles 54 590
Chemical Reactivity - Volume 1: Theories…
Savas Kaya, Laszlo Von Szentpaly, …
Paperback
R4,005
Discovery Miles 40 050
The Foundations of Physical Organic…
E. Thomas Strom, Vera V. Mainz
Hardcover
R5,475
Discovery Miles 54 750
Advances in Physical Organic Chemistry…
Ian Williams, Nick Williams
Hardcover
R5,460
Discovery Miles 54 600
|