![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
This is the seventh volume in the successful series designed to help the chemistry community keep current with the many new developments in computational techniques. The writing style is refreshingly pedagogical and non-mathematical, allowing students and researchers access to computational methods outside their immediate area of expertise. Each invited author approaches a topic with the aim of helping the reader understand the material, solve problems, and locate key references quickly.
Reviews in Plasmonics 2010, the first volume of the new book serial from Springer, serves as a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the year's progress in surface plasmon phenomena and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics. Reviews in Plasmonics offers an essential reference material for any lab working in the Plasmonics field and related areas. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of Plasmonics will find it an invaluable resource. Key features: Accessible utility in a single volume reference. Chapters authored by known leading figures in the Plasmonics field. New volume publishes annually. Comprehensive coverage of the year's hottest and emerging topics. Reviews in Plasmonics 2011 topics include: Metal Nanoparticles for Molecular Plasmonics. Surface Plasmon Resonance based Fiber Optic Sensors. Elastic Light Scattering of Biopolymer/Gold Nanoparticles Fractal Aggregates. Influence of electron quantum confinement on the electronic response of metal/metal interfaces. Melting Transitions of DNA-Capped Gold Nanoparticle Assemblies. Nanomaterial Based Long Range Optical Ruler for Monitoring Biomolecular Activities. Plasmonic Gold and Silver Films: Selective Enhancement of Chromophore Raman Scattering or Plasmon-Assisted Fluorescence.
This book provides a review of biochemistry as an algebra of molecules of living matter and utilizes Clifford algebras to discuss the basic biochemical processes of DNA replication, DNA transcription, RNA splicing and translation. Viral carcinogenesis is discussed in depth, specific attention is paid to the structural features of biomolecules that define a particular Clifford algebra, and useful examples of genetic information being transformed into Clifford algebras are provided.
Microbial biosurfactants are green molecules with high application potential in environmental and industrial sectors. Chemical diversity of biosurfactants allows them versatility and broad range surfactants capability without compromising performance or economic viability. Biosurfactants are used as emulsifiers, dispersants, wetting agents, oil recovery agents, biopesticides, stabilizers, solubilizers, and bioremediation agents (pesticide, heavy metals and oil spill cleanup). This comprehensive book on biosurfactants and their environmental and industrial applications offers a broad spectrum of information on potential applications of biosurfactants in various fields and related technological developments.
This new book focuses on nanomaterial development as well as investigations of combustion and explosion processes. It presents valuable information on the modeling of processes and on quantum chemical calculations and leading-edge research from around the world in this dynamic field, focusing on concepts above formal experimental techniques and theoretical methods of chemical physics for micro- and nanotechnologies. Also presented are non-linear kinetic appearances and their possible applications.
This title includes a number of Open Access chapters. Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This new volume presents a selection of articles on topics in the field.
This volume, Applied Chemistry and Chemical Engineering, Volume 5: Research Methodologies in Modern Chemistry and Applied Science, is designed to fulfill the requirements of scientists and engineers who wish to be able to carry out experimental research in chemistry and applied science using modern methods. Each chapter describes the principle of the respective method, as well as the detailed procedures of experiments with examples of actual applications. Thus, readers will be able to apply the concepts as described in the book to their own experiments. This book traces the progress made in this field and its sub-fields and also highlight some of the key theories and their applications and will be a valuable resource for chemical engineers in Materials Science and others.
This book is dedicated to the field of conductive polymers, focusing on electrical interactions with biological systems. It addresses the use of conductive polymers as the conducting interface for electrical communications with the biological system, both in vitro and in vivo. It provides an overview on the chemistry and physics of conductive polymers, their useful characteristics as well as limitations, and technologies that apply conductive polymers for medical purposes. This groundbreaking resource addresses cytotoxicity and tissue compatibility of conductive polymers, the basics on electromagnetic fields, and commonly used experimental methods. Readers will also learn how cells are cultured in vitro with conductive polymers, and how conductive polymers and living tissues interact electrically. Throughout the contents, chapter authors emphasize the importance of conductive polymers in biomedical engineering and their potential applications in medicine.
Volume 2 of the 5-volume Quantum Nanochemistry presents fundamental and advanced concepts, principles, and models as well as their first and novel combinations and applications in quantum (physical) and chemical theory of atomic structure. It exposes the atom's perspective of quantum structures, spanning its diverse analytical predictions by historical and in-depth quantum analysis of the atomic periodicities of the atomic radii, ionization potential, electron affinity, electronegativity, and chemical hardness, along with the recently consecrated electrophilicity and chemical action.
An excellent knowledge base in soil and water chemistry —the ideal basic text for students of the environmental sciences In Environmental Soil and Water Chemistry, leading soil and water authority V. P. Evangelou presents a complete overview of the principles and applications of soil science, addressing the subject by viewing the interactions between soil and water as a basis for understanding the nature, extent, and treatment of polluted soil and water. The text opens with a discussion of principles—the fundamental tenets of chemistry needed to understand soil and water quality and treatment of polluted resources—and continues with a look at applications for the control and treatment of soil and water. Suitable for advanced undergraduates and beginning graduate students, this extensive, timely volume covers:
In a world where chemical pollutants pose a grave threat to the earth's natural resources, Environmental Soil and Water Chemistry offers students both an excellent textbook and a handy reference on the wide spectrum of environmental problems they will confront outside the classroom.
This timely and unique publication is designed for graduate students and researchers in inorganic and materials chemistry and covers bonding models and applications of symmetry concepts to chemical systems. The book discusses the quantum mechanical basis for molecular orbital concepts, the connections between molecular orbitals and localized views of bonding, group theory, bonding models for a variety of compounds, and the extension of these ideas to solid state materials in band theory. Unlike other books, the concepts are made tangible to the readers by guiding them through their implementation in MATLAB functions. No background in MATLAB or computer programming is needed; the book will provide the necessary skills. Key Features Visualization of the Postulates of Quantum Mechanics to build conceptual understanding MATLAB functions for rendering molecular geometries and orbitals Do-it-yourself approach to building a molecular orbital and band theory program Introduction to Group Theory harnessing the 3D graphing capabilities of MATLAB Online access to a growing collection of applications of the core material and other appendices Bonding through Code is ideal for first-year graduate students and advanced undergraduates in chemistry, materials science, and physics. Researchers wishing to gain new tools for theoretical analysis or deepen their understanding of bonding phenomena can also benefit from this text. About the Author Daniel Fredrickson is a Professor in the Department of Chemistry at the University of Wisconsin-Madison, where his research group focuses on understanding and harnessing the structural chemistry of intermetallic phases using a combination of theory and experiment. His interests in crystals, structure, and bonding can be traced to his undergraduate research at the University of Washington (B.S. in Biochemistry, 2000) with Prof. Bart Kahr, his Ph.D. studies at Cornell University (2000-2005) with Profs. Stephen Lee and Roald Hoffmann, and his post-doctoral work with Prof. Sven Lidin at Stockholm University (2005-2008). As part of his teaching at UW-Madison since 2009, he has worked to enhance his department's graduate course, Physical Inorganic Chemistry I: Symmetry and Bonding, through the incorporation of new material and the development of computer-based exercises.
A novel proposal for teaching organic chemistry based on a broader and simplified use of quantum chemistry theories and notions of some statistical thermodynamic concepts aiming to enrich the learning process of the organic molecular properties and organic reactions. A detailed physical chemistry approach to teach organic chemistry for undergraduate students is the main aim of this book. A secondary objective is to familiarize undergraduate students with computational chemistry since most of illustrations of optimized geometries (plus some topological graphs) and information is from quantum chemistry outputs which will also enable students to obtain a deeper understanding of organic chemistry.
This book collects all the latest advances in the leading research of the circularly polarized luminescence (CPL) of small organic molecules. Compared with that of lanthanide-based fluorophores, the research into the CPL of small organic molecules is still at the developmental stage for their relatively smaller dissymmetric factors, but has been a source of widespread attention recently. The book includes the state of the art of the discoveries in CPL organic molecules, such as helicenes, biaryls, cyclophanes, boron dipyrromethene dyes, and other chiral molecules, mostly in their isolated states, covering all possible chiral substances for future applications. This book also highlights the recent development of CPL instruments as well as time-resolved circular dichroism spectroscopy, to facilitate the further development and future design of CPL molecules.
Portable X-ray fluorescence (PXRF) instrumentation has some unique analytical capabilities for the in situ analysis of samples in the field. These capabilities have been extended in recent years by the continuing development of solid state detectors, surface mounted electronics, digital signal processing technology, Li-ion batteries combined with a choice of rugged sealed radioisotope sources or miniature X-ray tubes that provide lightweight hand-held devices. As well as opening up new applications, in situ measurements by PXRF, where the instrument is placed in direct contact with the object to be analysed, involve the complete integration of sampling and analysis. Careful interpretation of results is therefore required, particularly when the analysis is used to estimate the bulk composition of a sample. In this monograph, an overview is given of instrumentation, analytical capabilities, and limitations in the interpretation of results, sampling considerations and applications where PXRF offers substantial advantages over conventional analytical techniques. The aim is to give the reader an insight into the capabilities of the technique and to demonstrate the contribution it can make to a range of areas of contemporary scientific interest. Chapters are written by internationally recognised scientists with practical experience of in situ analysis using portable X-ray fluorescence and demonstrates the wide range of applications for the technique. The topics covered are illustrated with diagrams and photographs where appropriate and each chapter includes supporting references to enable the reader to gain a greater understanding of a particular application. Topics include: -analytical capabilities -instrumentation -quantification -correction procedures -sampling considerations -future developments Applications include: -the assessment of contaminated land -surfaces -coatings and paints -workplace monitoring -metal & alloy sorting -geochemical prospecting -archaeological investigations -museum samples & works of art -extraterrestrial analysis The work is aimed at scientists who have some knowledge of analytical techniques and/or the applications covered, but are not fully familiar with the capabilities of PXRF. It offers a general introduction to the technique and its applications rather than a research monograph. As such, it is aimed at analytical scientists, environmental and geological scientists, industrial hygienists, industrial and plant scientists, archaeometrists and museum researchers, research scientists and research students with projects in the applications covered. Undergraduate students studying associated degree courses will also benefit from the work.
Over recent years electronic spectroscopy has developed significantly, with key applications in atmospheric chemistry, astrophysics and astrochemistry. High Resolution Electronic Spectroscopy of Small Molecules explores both theoretical and experimental approaches to understanding the electronic spectra of small molecules, and explains how this information translates to practice. Professors Geoffrey Duxbury and Alexander Alijah present the links between spectroscopy and photochemistry, and discuss theoretical treatments of the interaction between different electronic states. They provide a thorough discussion of experimental techniques, and explore practical applications. This book will be an indispensable reference for graduate students and researchers in physics and chemistry working on theoretical and practical aspects of electronic spectra, as well as atmospheric scientists, photochemists, kineticists and professional spectroscopists.
In the mid-nineteenth century, chemists came to the conclusion that
elements should be organized by their atomic weights. However, the
atomic weights of various elements were calculated erroneously, and
chemists also observed some anomalies in the properties of other
elements. Over time, it became clear that the periodic table as
currently comprised contained gaps, missing elements that had yet
to be discovered. A rush to discover these missing pieces followed,
and a seemingly endless amount of elemental discoveries were
proclaimed and brought into laboratories. It wasn't until the
discovery of the atomic number in 1913 that chemists were able to
begin making sense of what did and what did not belong on the
periodic table, but even then, the discovery of radioactivity
convoluted the definition of an element further. Throughout its
formation, the periodic table has seen false entries, good-faith
errors, retractions, and dead ends; in fact, there have been more
elemental "discoveries" that have proven false than there are
current elements on the table.
The CRC Handbook of Enthalpy Data of Polymer-Solvent Systems presents data that is as essential to the production, process design, and use of polymers as it is to understanding the physical behavior and intermolecular interactions in polymer solutions and in developing thermodynamic polymer models. Providing an all-encompassing collection of current enthalpy data for all types of polymer solutions, this handbook is a ready companion with Christian Wohlfarth's previously published handbooks of thermodynamic data for copolymer solutions, aqueous polymer solutions, and polymer solutions at elevated pressures, which contain only a small amount of enthalpic data in comparison to the data presented here. This volume contains 1770 data sets that include enthalpies of mixing and dilution for the entire concentration range as well as partial enthalpies of mixing and solution at infinite dilution. Special appendices allow scientists to access specific systems and data easily. The CRC Handbook of Enthalpy Data of Polymer-Solvent Systems is a practical, one-stop resource that allows polymer chemists, biochemists, chemical engineers, materials scientists, and physical chemists involved in both industrial and laboratory processes to quickly retrieve relevant information as needed.
The present volume includes most of the material of the invited lectures delivered at the NATO Advanced Study Institute "Morphogenesis through the interplay of nonlinear chemical instabilities and elastic active media" held from 2th to 14th July 2007 at the Institut d'Etudes Scientifiques de Cargese (http: //www.iesc.univ-corse.fr/), in Corsica (France). This traditional place to organize Summer Schools and Workshops in a well equipped secluded location at the border of the Mediterranean sea has, over many years now, earned an increasing deserved reputation. Non-linear dynamics of non equilibrium systems has worked its way into a great number of fields and plays a key role in the understanding of se- organization and emergence phenomena in domains as diverse as chemical reactors, laser physics, fluid dynamics, electronic devices and biological morphogenesis. In the latter case, the viscoelastic properties of tissues are also known to play a key role. The control and formulation of soft responsive or "smart" materials has been a fast growing field of material science, specially in the area of po- mer networks, due to their growing applications in bio-science, chemical sensors, intelligent microfluidic devices, ... . Nature is an important p- vider of active materials whether at the level of tissues or at that of s- cellular structures. As a consequence, the fundamental understanding of the physical mechanisms at play in responsive materials also shines light in the understanding of biological artefacts."
A concise description of models and quantitative parameters in structural chemistry and their interrelations, with 280 tables and >3000 references giving the most up-to-date experimental data on energy characteristics of atoms, molecules and crystals (ionisation potentials, electron affinities, bond energies, heats of phase transitions, band and lattice energies), optical properties (refractive index, polarisability), spectroscopic characteristics and geometrical parameters (bond distances and angles, coordination numbers) of substances in gaseous, liquid and solid states, in glasses and melts, for various thermodynamic conditions. Systems of metallic, covalent, ionic and van der Waals radii, effective atomic charges and other empirical and semi-empirical models are critically revised. Special attention is given to new and growing areas: structural studies of solids under high pressures and van der Waals molecules in gases. The book is addressed to researchers, academics, postgraduates and advanced-course students in crystallography, materials science, physical chemistry of solids.
The work presented in this thesis involves a number of sophisticated experiments highlighting novel applications of the Pixel Imaging Mass Spectrometry (PImMS) camera in the field of photoinduced molecular dynamics. This approach represents the union of a new enabling technology (a multiple memory register, CMOS-based pixel detector) with several modern chemical physics approaches and represents a significant leap forward in capabilities. Applications demonstrated include three-dimensional imaging of photofragment Newton spheres, simultaneous electron-ion detection using a single sensor, and ion-ion velocity correlation measurements that open the door to novel covariance imaging experiments. When combined with Coulomb explosion imaging, such an approach is demonstrated to allow the measurement of molecular structure and motion on a femtosecond timescale. This is illustrated through the controlled photoexcitation of torsional motion in biphenyl molecules and the subsequent real-time measurement of the torsional angle.
This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.
This book provides up-to-date discussion of modern polarographic methods, with examples and experimental details. It is designed for the practicing analyst and a factor in bringing the reincarnated area of analytical chemistry into a new and healthy maturity.
Written by a chemical physicist specializing in macromolecular physics, this book brings to life the definitive work of celebrated scientists who combined multidisciplinary perspectives to pioneer the field of polymer science. The author relates firsthand the unique environment that fostered the experimental breakthroughs underlying some of today's most widely accepted theories, mathematical principles, and models for characterizing macromolecules. Physical Chemistry of Macromolecules employs the unifying principles of physical chemistry to define the behavior, structure, and intermolecular properties of macromolecules in both solution and bulk states. The text explains the experimental techniques, such as light scattering, and results used to support current theories. Examining both equilibrium and transport properties, the book describes the properties of dilute, semi-dilute, and concentrated polymer solutions, including compressible fluids. It then covers amorphous liquids and glasses, and polymer networks. The final chapters discuss the properties of solutions containing stiff-chain molecules and polyelectrolytes. Topics also include the macromolecular nature of rubber elasticity, viscoelasticity, and the distribution of relaxation times associated with the glass transition. By explaining the experimental and mathematical basis for the theories and models used to define macromolecular behavior, Physical Chemistry of Macromolecules demonstrates how these techniques and models can be applied to analyze and predict the properties of new polymeric materials.
This book discusses various aspects of different bulk TSO single crystals in terms of thermodynamics; bulk crystal growth using diverse techniques involving gas phase, solution, and melt; and the resulting crystal size, appearance, and structural quality as well as the fundamental properties that were gathered from bulk single crystals. It presents experimental results accompanied by theoretical results, such as band structure and native defects. Combinations of various bulk single crystals along with their properties show great promise in practical device functionality and fabrication. Many TSO-based devices have already been demonstrated in several technical areas, including electronics, optoelectronics, and photovoltaics as well as sensing devices. The book is the first of its kind that brings together a variety of bulk single crystals of scientifically and technically important TSOs along with their properties, which may result in novel devices with unique functionalities.
Computational and theoretical tools for understanding biological processes at the molecular level is an exciting and innovative area of science. Using these methods to study the structure, dynamics and reactivity of biomacromolecules in solution, computational chemistry is becoming an essential tool, complementing the more traditional methods for structure and reactivity determination. Modelling Molecular Structure and Reactivity in Biological Systems covers three main areas in computational chemistry; structure (conformational and electronic), reactivity and design. Initial sections focus on the link between computational and spectroscopic methods in the investigation of electronic structure. The use of Free Energy calculations for the elucidation of reaction mechanisms in enzymatic systems is also discussed. Subsequent sections focus on drug design and the use of database methods to determine ADME (absorption, distribution, metabolism, excretion) properties. This book provides a complete reference on state of the art computational chemistry practised on biological systems. It is ideal for researchers in the field of computational chemistry interested in its application to biological systems. |
You may like...
Domain Decomposition Methods in Science…
Thomas Dickopf, Martin J. Gander, …
Hardcover
R4,141
Discovery Miles 41 410
Computational Statistics with R, Volume…
Marepalli B Rao, C.R. Rao
Hardcover
R4,389
Discovery Miles 43 890
Statistical Regression Modeling with R…
Ding-Geng (Din) Chen, Jenny K. Chen
Hardcover
R3,345
Discovery Miles 33 450
Essential Java for Scientists and…
Brian Hahn, Katherine Malan
Paperback
R1,266
Discovery Miles 12 660
Modeling and Simulation with Compose and…
Stephen L. Campbell, Ramine Nikoukhah
Hardcover
R3,180
Discovery Miles 31 800
Sparse Graphical Modeling for High…
Faming Liang, Bochao Jia
Hardcover
R2,643
Discovery Miles 26 430
Mathematical Programming and Game Theory
S. K. Neogy, Ravindra B. Bapat, …
Hardcover
R2,667
Discovery Miles 26 670
|