![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Corrosion Control Through Organic Coatings, Second Edition provides readers with useful knowledge of the practical aspects of corrosion protection with organic coatings and links this to ongoing research and development. Thoroughly updated and reorganized to reflect the latest advances, this new edition expands its coverage with new chapters on coating degradation, protective properties, coatings for submerged service, powder coatings, and chemical pretreatment. Maintaining its authoritative treatment of the subject, the book reviews such topics as corrosion-protective pigments, waterborne coatings, weathering, aging, and degradation of paint, and environmental impact of commonly used techniques including dry- and wet-abrasive blasting and hydrojetting. It also discusses theory and practice of accelerated testing of coatings to assist readers in developing more accurate tests and determine corrosion protection performance.
The magneto luminous chemical vapor deposition (MLCVD) method is the perfect example of the "front-end green process." It employs an entirely new process that expends the minimum amount of materials in gas phase, yields virtually no effluent, and therefore requires no environmental remediation. Unlike the "back-end green process," which calls for add-on processes to deal with effluent problems, the newer MLCVD approach is a completely different phenomenon that has never been adequately described, until now. Dispelling previous misconceptions and revealing new areas for investigation, Magneto Luminous Chemical Vapor Deposition describes the key process of dielectric breakdown of gas molecules under the influence of a magnetic field. It emphasizes behavioral distinctions between molecular gasses that cause plasma polymerization (such as methane and trimethylsilane) and mono-atomic gases (e.g., helium and argon) when dealing with the dielectric breakdown of the gas phase under low pressure. The author also reveals his minimum perturbation theory of biocompatibility. This is based on the realization that nanofilms prepared using MLCVD have unique, stable interfacial characteristics necessary to achieve a surface that can be tolerated in various biological environments. The author presents alternating views based on NASA's recent discovery that a magnetic field burst from the earth triggers the inception of the aurora borealis. Detailing similarities between this phenomenon and the inception of the magneto luminous gas phase described in this book, the author proposes that proof of the one occurrence could shed light on the other. Expanding on the author's previous works, this book introduces new discoveries, highlights the newfound errors of previous assumptions, and juxtaposes many cutting-edge alternative views and anomalies associated with the field.
Oxide semiconductors, including titanium dioxide (TiO2), are increasingly being considered as replacements for silicon in the development of the next generation of solar cells. Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide presents the basic properties of binary metal oxide semiconductors and the performance-related properties of TiO2 as they relate to solar energy. The book provides a general background on oxide semiconductors based on binary oxides and their solid solutions, including electronic and ionic conductors. It covers several aspects of solid-state electrochemistry of oxides, such as defect chemistry, and defect-related properties, such as electrical properties, diffusion, segregation, and reactivity. The author also takes a pioneering approach in considering bulk versus surface semiconducting properties, showing how they are different due to the effect of segregation. One of the first on semiconducting, photocatalytic, and photoelectrochemical properties of TiO2 and its solid solutions with donor- and acceptor-type ions, the book discusses defect chemistry of TiO2 in terms of defect equilibria and defect-related properties, including electrical properties, self and chemical diffusion, surface properties, segregation, and reactivity and photoreactivity with oxygen, water, and microbial agents. The text also illustrates the use of TiO2 as an emerging material for solar energy conversion systems, including the generation of hydrogen fuel by photoelectrochemical water splitting, the photocatalytic purification of water, and the generation of photovoltaic electricity. In addition, it presents defect disorder diagrams for the formation of TiO2-based semiconductors with controlled properties. Encompassing the areas of solid-state science, surface chemistry, and photocatalysis, this book reflects the increasing awareness of the importance of structural imperfections, such as point defects, in understanding the properties of metal oxides, specifically TiO2-based semiconductors.
Intended for industrial chemists and chemical engineers, this book offers a concise review of the concepts and techniques applicable to emulsions and dispersions. It describes a wide range of topics under the headings of particulates, interfaces, stability of dispersions and dispersed-phase systems. The text also covers recently-developed computer-based methods which offer fast, precise measurements, such as particle-size distributions by quasi-elastic light scattering, dilational surface elasticity from the damping of ripples, and foam stability by the automatic recording of small pressure differences.
'Ben-Naim convincingly argues that SMI not only gives a simpler and more broadly applicable definition of entropy, but also clears up much of the historical and modern confusion surrounding the second law. This book will interest any individual who wants to understand how SMI gives a clear definition of entroy.'CHOICE ConnectThis book discusses the proper definitions of entropy, the valid interpretation of entropy and some useful applications of the concept of entropy. Unlike many books which apply the concept of entropy to systems for which it is not even defined (such as living systems, black holes and the entire universe), these applications will help the reader to understand the meaning of entropy. It also emphasizes the limitations of the applicability of the concept of entropy and the Second Law of Thermodynamics. As with the previous books by the author, this book aims at a clear and mystery-free presentation of the central concept in thermodynamics - the entropy.In this book, the concepts of entropy and the Second Law are presented in a friendly, simple language. It is devoid of all kinds of fancy and pompous statements made by authors of popular science books who write on this subject.
'Ben-Naim convincingly argues that SMI not only gives a simpler and more broadly applicable definition of entropy, but also clears up much of the historical and modern confusion surrounding the second law. This book will interest any individual who wants to understand how SMI gives a clear definition of entroy.'CHOICE ConnectThis book discusses the proper definitions of entropy, the valid interpretation of entropy and some useful applications of the concept of entropy. Unlike many books which apply the concept of entropy to systems for which it is not even defined (such as living systems, black holes and the entire universe), these applications will help the reader to understand the meaning of entropy. It also emphasizes the limitations of the applicability of the concept of entropy and the Second Law of Thermodynamics. As with the previous books by the author, this book aims at a clear and mystery-free presentation of the central concept in thermodynamics - the entropy.In this book, the concepts of entropy and the Second Law are presented in a friendly, simple language. It is devoid of all kinds of fancy and pompous statements made by authors of popular science books who write on this subject.
Exploring current themes in modern computational and membrane protein biophysics, this book presents a comprehensive account of the fundamental principles underlying different methods and techniques used to describe the intriguing mechanisms by which membrane proteins function. The book discusses the experimental approaches employed to study these proteins, with chapters reviewing recent crucial structural advances that have allowed computational biophysicists to discern how these molecular machines work. The book then explores what computational methods are available to researchers and what these have taught us about three key families of membrane proteins: ion channels, transporters and receptors. The book is ideal for researchers in computational chemistry and computational biophysics.
This book characterizes the kinematic and chemical structures of disk-forming regions around low-mass protostellar sources and their interplay based on Atacama Large Millimeter/submillimeter Array (ALMA) observations. It describes the chemical evolution of molecules formed in an interstellar gas using the ALMA observations of 5 Sun-like protostars at a spatial resolution of a few tens au scale, which unveils the physical mechanism of star and planetary formation. The book reviews the author's successful works, focusing on two key findings: (i) A drastic change in the chemical composition of the gas around the centrifugal barrier of the infalling-rotating envelopes, and (ii) the chemical composition in the disk-forming regions, which varies from source to source depending on the chemical characteristics of the parent molecular cloud. These findings are based on the fine characterization of physical structures based on careful kinematic analyses. An additional attraction is the inclusion of the skillful reviews of ALMA observatory and its observation and physical models to describe the observed gas structure.
Advances in laser technology over the last 10-15 years have stimulated study of the active control of quantum molecular dynamics. Lasers may used to generate external fields of varying intensity, phases, and spectral content, which then are used to alter the molecular dynamics of a system so as to generate more of a particular product. Control of reactions at this microscopic level is one of the hot areas of research in chemical physics. This book describes the current status of the theory of optical control of molecular dynamics
Recent developments in nanoparticle and microparticle delivery systems are revolutionizing delivery systems in the food industry. These developments have the potential to solve many of the technical challenges involved in creating encapsulation, protection, and delivery of active ingredients, such as colors, flavors, preservatives, vitamins, minerals, and nutraceuticals. Nanoparticle- and Microparticle-based Delivery Systems: Encapsulation, Protection and Release of Active Compounds explores various types of colloidal delivery systems available for encapsulating active ingredients, highlighting their relative advantages and limitations and their use. Written by an international authority known for his clear and rigorous technical writing style, this book discusses the numerous kinds of active ingredients available and the issues associated with their encapsulation, protection, and delivery. The author takes a traditional colloid science approach and emphasizes the practical aspects of formulation of particulate- and emulsion-based delivery systems with food applications. He then covers the physicochemical and mechanical methods available for manufacturing colloidal particles, highlighting the importance of designing particles for specific applications. The book includes chapters devoted specifically to the three major types of colloidal delivery systems available for encapsulating active ingredients in the food industry: surfactant-based, emulsion-based, and biopolymer-based. It then reviews the analytical tools available for characterizing the properties of colloidal delivery systems, presents the mathematical models for describing their properties, and highlights the factors to consider when selecting an appropriate delivery system for a particular application backed up by specific case studies. Based on insight from the author's own experience, the book describes why delivery systems are needed, the important factors to consider when designing them, methods of characterizing them, and specific examples of the range of food-grade delivery systems available. It gives you the necessary knowledge, understanding, and appreciation of developments within the current research literature in this rapidly growing field and the confidence to perform reliable experimental investigations according to modern international standards.
Recent advances in both experimental techniques and theoretical methodologies have meant that increasingly sophisticated studies concerning the formation, structures, energetics and reaction dynamics of state- or energy-selected molecular ions can now be performed. In order to better serve the ion chemistry and physics community, each volume of this series is dedicated to reviewing a specific topic, emphasizing new experimental and theoretical developments in the study of ions. The Wiley Series in Ion Chemistry and Physics will help stimulate new research directions and point to future opportunities in the field of ion chemistry and physics. This volume, the fifth in the series, concentrates on the important area of organic ions. Our understanding of these ions has been significantly improved over the last decade due to both theoretical and experimental advances, and it is now routinely possible to calculate organic ion structures by ab initio molecular orbital methods with very high precision. At the same time, the experimental tools used to study organic ions have become much more refined. This volume provides a timely overview of some of the key approaches which are currently producing such important results in the study of negative ions, and contains seven chapters written by acknowledged experts in the field. It will be of great interest to both experts and newcomers, both of whom will benefit from the in-depth discussion of the latest methods and results.
This revised edition has been updated to meet the minimum requirements of the new Singapore GCE A level syllabus that would be implemented in the year 2016. Nevertheless, this book is also highly relevant to students who are studying chemistry for other examination boards. In addition, the authors have also included more Q&A to help students better understand and appreciate the chemical concepts that they are mastering.
The world faces significant challenges as population and consumption continue to grow while nonrenewable fossil fuels and other raw materials are depleted at ever-increasing rates. This volume takes a technical approach that addresses these issues using green design and analysis. It brings together innovative research, new concepts, and novel developments in the application of new tools for chemical and materials engineers. It is an immensely research-oriented, comprehensive, and practical work that focuses on the use of applied concepts to enhance productivity and sustainability in chemical engineering. It contains significant research that reports on new methodologies and important applications in the fields of chemical engineering as well as the latest coverage of chemical databases. Highlighting theoretical foundations, real-world cases, and future directions, the volume covers a diverse collection of the newest innovations in the field, including new research on atomic/nuclear physics, the barometric formula, amino acids in aqueous solutions, bioremediation and biotechnology, and more.
Applications of Supramolecular Chemistry introduces the use of non-covalent interactions and molecular recognition for many fields. Applications include the analysis of technically, medically, and environmentally important chemical compounds, their separation, purification and removal, and the design of new materials, including supramolecular electronics. The book also explores biological interactions and applications in the food and textile industries.
Digital Informatics and Isotopic Biology discusses self-organization and the emergence of order at the atomic scale with a particular emphasis on the digital information that can be carried by proper ordering of stable isotopes. This ushers in the concept of isotopic biology as a complimentary level to the "common" biology. The book discusses the area of isotopic randomness (isotopicity) and numerous implications of it for physics, biology, biomedicine, informatics, and other areas of science. It offers a unique and original view and may be the first milestone of this novel emerging area. The character of the book is highly interdisciplinary with numerous philosophical and historical discourses and comments.
Colloidal drug delivery systems present a range of therapeutic benefits in the treatment of a number of challenging conditions, allowing researchers to cross barriers that have previously prevented efficient treatment while offering improved and more targeted absorption. Summarizing recent research in the field, Colloids in Drug Delivery assembles the work of 65 of the world's leading colloid scientists who examine the full spectrum of this rapidly emerging science, from pure to applied, most of it drawn from their own experience and research. The book begins by examining the basics of surfactant and polymer surface activity and self-assembly, the various types of structures formed by such compounds, and their use in drug delivery and biotechnology. It examines the development of controlled and targeted delivery systems by utilizing the various properties of colloids before moving on to discuss various applications and fields of research. Topics discussed include: The use of hard, soft, and macromolecular colloidal drug delivery systems formed by surfactants, polymers, proteins, and lipids Recent advances in procolloidal systems, self-emulsifying drug delivery systems, and aerosol applications to pharmaceutical drug delivery Colloidal nanocarriers for imaging applications and the treatment of dental and periodontal diseases Classification and application of colloidal drug delivery systems in tumor targeting The use of colloids for improved nasal, ocular, vaginal, oral, buccal, gastrointestinal, and colon drug delivery Examining topics necessary to the critical evaluation of a drug candidate's potential for delivery, the book also describes the preparation, classification, interfacial activity, surface modifications and influence on particle characteristics, drug delivery, and drug targeting. Each chapter in this expansive volume explains why a particular system is used for the intended application, how it is made, and how it behaves. All those concerned with the research, development, and manufacture of drugs will find this a valuable reference, offering a wealth of research upon which they can build.
The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics.
This volume presents recent progress and perspectives in multi-photon processes and spectroscopy of atoms, ions, and molecules. The subjects in the series cover the experimental and theoretical investigations in interdisciplinary research fields in natural science including chemistry, physics, bioscience and material science.
The fourth volume of the Collected Works is devoted to Wigners contribution to physical chemistry, statistical mechanics and solid-state physics. One corner stone was his introduction of what is now called the Wigner function, while his paper on adiabatic perturbations foreshadowed later work on Berry phases. Although few in number, Wigners articles on solid-state physics laid the foundations for the modern theory of the electronic structure of metals.
-Conjugated molecules with an even number of -electrons usually have a closed-shell ground state. However, recent studies have demonstrated that a certain type of molecules could show open-shell singlet ground state and display diradical-like (diradicaloid) behavior. Their electronic structure can be understood in terms of the "diradical character" and "aromaticity" concepts. They display very different electronic properties from traditional closed-shell -conjugated molecules and could be used as next-generation molecular materials. This book provides a comprehensive review on the chemistry, physics, and material applications of open-shell singlet diradicaloids. Particularly, it elaborates the fundamental structure-diradical character-electronic property relationships both theoretically and experimentally. The book has been written by leading scientists in the field from Japan, Germany, Spain, Italy, China, and Singapore.
Recent Methodology in Chemical Sciences provides an eclectic survey of contemporary problems in experimental, theoretical, and applied chemistry. This book covers recent trends in research with the different domain of the chemical sciences. The chapters, written by knowledgeable researchers, provide different insights to the modern-day research in the domain of spectroscopy, plasma modification, and theoretical and computational analysis of chemical problems. It covers descriptions of experimental techniques, discussions on theoretical modeling, and much more.
Boron nitride was first produced in the 18th century and, by virtue of its extraordinary mechanical strength, has found extensive application in industrial processes since the 1940s. However, the more recent discovery that boron nitride allotropes are as structurally diverse as those of carbon (e.g. fullerenes, graphene, carbon nanotubes) has placed this material, and particularly its low-dimensional allotropes, back at the forefront of modern material science. This book provides a comprehensive history of this rapid rise in the status of boron nitride and boron nitride nanomaterials, spanning the earliest examples of three-dimensional boron nitride allotropes, through to contemporary structures such as monolayer hexagonal boron nitride, boron nitride nanomeshes, boron nitride nanotubes and the incorporation of boron nitride into cutting-edge van der Waals heterostructures. It specifically focuses on the properties, applications and synthesis techniques for each of these allotropes and examines how the evolution in boron nitride production methods is linked to that in our understanding of how low-dimensional nanomaterials self-assemble, or 'grow', during synthesis. The book demonstrates the key synergy between growth mechanisms and the development of new, advanced nanostructured materials.
Nuclear magnetic resonance (NMR) spectroscopy, a technique widely used for structure determination by chemists and biochemists, is based on the detection of tiny radio signals emitted by the nucleus of an atom when immersed in a strong magnetic field. Every chemical substance gives rise to a recognizable NMR signature closely related to its molecular structure. This comprehensive account adopts an accessible, pictorial approach to teach the fundamental principles of high resolution NMR. Mathematical formalism is used sparingly, and everyday analogies are used to provide insight into the physical behaviour of nuclear spins. The first three chapters set out the basic tools for understanding the rest of the book. Each of the remaining chapters provides a self- contained reference to a specific theme, for example spin echoes, and traces the way it influences our understanding of high resolution NMR methodology. Spin Choreography provides a clear and an authoritative introduction to the fundamental principles of high resolution NMR, which will appeal to all practitioners who wish to master this complex but fascinating subject. The book will also serve as supplementary reading for upper-level undergraduate and graduate courses on spectroscopy and physical methods.
Exam Board: OCR Level: A-Level Subject: Chemistry First Teaching: September 2015 First Exam: Summer 2017 Create confident, literate and well-prepared students with skills-focused, topic-specific workbooks. Our Student Workbooks build students' understanding, developing the confidence and exam skills they need, whilst providing ready prepared lesson solutions. - Supplements key resources such as textbooks to adapt easily to existing schemes of work - Offers time-saving and economical lesson solutions for both specialist and non-specialist teachers - Provides flexible resource material to reinforce and apply topic understanding throughout the course, as classwork or extension tasks, or for revision - Creates opportunities for self-directed learning and assessment with answers to tasks and activities supplied online - Prepares students to meet the demands of the specification by practising exam technique and developing their literacy skills
Catalyst/Polymerization: Model Silica Supported Olefin Polymerization Catalysts (J.P. Blitz). Statistical Propagation Models for ZieglerNatta Polymerization (H.N. Cheng). Supported Catalysts in Stirred Bed Gas Phase Reactors (K.D. Hungenberg, M. Kersting). Functionalization: Functional Polyolefins Prepared by Borane Research (T.C. Chung). Synthesis of PolyolefinPMMA Graft Copolymers (T.C. Chung et al.). Supported Lewis Acid Catalysts Based on Polyolefin Thermoplastics (T.C. Chung, A. Kumar). Characterization: Structure, Crystallization, and Melting of Linear, Branched, and Copolymerized Polyethylenes as Revealed by Fractionation Methods and DSC (V.B.F. Mathot). Development of High Performance TREF for Polyolefin Analysis (L. Wild, C. Blatz). NMR Analysis of Multicomponent Polyolefins (H.N. Chang). Polyolefin Blends and Composites: PolyethyleneCopolymer Blends (B. Crist, J. Rhee). Interphase Design in Cellulose Fiber/Polypropylene Composites (P. Gatenholm, J.M. Felix). 7 additional articles. Index. |
You may like...
Cosi Fan Tutte: Teatro Real de Madrid…
Sylvain Cambreling, Wolfgang A Mozart, …
Blu-ray disc
R707
Discovery Miles 7 070
Heinemann Integrated Science for CSEC
Byron Dawson, David Sang, …
Paperback
R1,082
Discovery Miles 10 820
Badass Trader - How To Trade Your Way To…
Robert J Van Eyden
Paperback
Plural Policing, Security and the COVID…
Monica den Boer, Eric Bervoets, …
Hardcover
R3,286
Discovery Miles 32 860
|