![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Leading readers through an extensive compilation of surface modification reactions and processes for specific tribological results, this reference compiles detailed studies on various residual stresses, reaction processes and mechanisms, heat treatment methods, plasma-based techniques, and more, for a solid understanding of surface structural changes that occur during various engineering procedures. This unique book explores topics previously ignored in other texts on surface engineering and tribology, offers guidelines for the consideration and design of wear life and frictional performance, and sections on laser impingement and nanometer scale surface modification.
Microporous Media presents new developments from nearly a decade of advancement. Written by a leading researcher in the field, this reference provides examples of the most original scientific and technical research impacting studies in porosity and microporosity, and illustrates methods to forecast the properties of microporous structures for improved electronic, construction, electrical, chemical, and medical applications. The book outlines new results in fractal, self-organization, and polymer theories; pore aging, and percolation; and their various engineering applications, and considers the impact of preparation conditions on the structure and properties of microporous materials.
A complete and up-to-date presentation of the fundamental theoretical principles and many applications of solvent extraction, this enhanced Solvent Extraction Principles and Practice, Second Edition includes new coverage of the recent developments in solvent extraction processes, the use of solvent extraction in analytical applications and waste recovery, and computational chemistry methods for modeling the solvent extraction of metal ions. Offering sound scientific and technical descriptions in a format accessible to students and expedient for researchers and engineers, this edition also features a new chapter on ionic strength corrections and contains more than 850 up-to-date literature citations.
Micelles are prevalent in naturally occurring and biological catalytic reactions. However, it is only in recent decades that scientists have developed kinetic models clarifying how micelle-mediated catalysis works at a molecular level. Written by a leading expert in the field, Micellar Catalysis is an in-depth examination of how micelles affect reaction mechanisms and reaction rates in organic and inorganic reactions. The book first discusses the structural and chemical properties of micelles and the role of thermodynamics, concentration, and additives in forming micelles. Demonstrating how intermolecular forces influence the reaction mechanisms, the author presents kinetic models for reactions catalyzed by normal micelles, as well as mixed micelles and metallomicelles. The book also compares various types of catalytic reactions with and without micelles to quantify their effect on reaction rates and rate constants. Using this information, it illustrates how micelles can modify reaction rates and improve catalytic efficiency, particularly for industrial processes. The final chapter explains the principles of kinetics used for data analysis. Focused on kinetic, chemical, and physical aspects of micelle-mediated reactions, this book offers clear insight into the complex mechanisms that occur in biological reactions. Micellar Catalysis is an essential source of reference for scientists involved in the research and development of micelles for industrial and biochemical applications.
Providing in-depth coverage of the technologies and various approaches, Luminous Chemical Vapor Deposition and Interface Engineering showcases the development and utilization of LCVD procedures in industrial scale applications. It offers a wide range of examples, case studies, and recommendations for clear understanding of this innovative science. The book comprises four parts. Part 1 describes the fundamental difference between glow discharge of an inert gas and that of an organic vapor, from which the concepts of Luminous Gas Phase derive. Part 2 explores the various ways of practicing Luminous Vapor Disposition and Treatment depending on the type and nature of substrates. Part 3 covers some very important aspects of surface and interface that could not have been seen clearly without results obtained by application of LCVD. Part 4 offers some examples of interface engineering that show very unique aspects of LCVD interface engineering in composite materials, biomaterial surface and corrosion protection by the environmentally benign process. Timely and up-to-date, the book provides broad coverage of the complex relationships involved in the interface between a gas/solid, liquid/solid, and a solid/solid. The author presents a new perspective on low-pressure plasma and describes key aspects of the surface and interface that could not be shown without the results obtained by LCVD technologies. Features Provides broad coverage of complex relationships involved in interface between a gas/solid, a liquid/solid, and a solid/solid Addresses the importance of the initial step of creating electrical glow discharge Describes the principles of creating chemically reactive species and their growth in the luminous gas phase Focuses on the nature of surface-state of solid and on the creation of imperturbable surface-state by the contacting phase or environment, which is vitally important in creating biocompatible surface, providing super corrosion protection of metals by environmentally benign processes, etc. Offers examples on how to use LCVD in the interface engineering process Presents a new view on low-pressure (low-temperature) plasma and emphasizes the importance of luminous gas phase and chemical reactions that occur in the phase About the author: Dr. Yasuda is one of the pioneers who explored low-pressure plasma for surface modification of materials and deposition of nano films as barrier and perm-selective membranes in the late 1960s. He obtained his PhD in physical and polymer chemistry working on transport properties of gases and vapors in polymers at State University of New York, College of Environmental Science and Forestry at Syracuse, NY. He has over 300 publications in refereed journals and books, and is currently a Professor Emeritus of Chemical Engineering, and Director, Center for Surface Science & Plasma Technology, University of Missouri-Columbia, and is actively engaged in research on the subjects covered by this book.
The IUPAC Series on Analytical and Physical Chemistry of
Environmental Systems provides the scientific community with a
critical evaluation of the state of the art on physicochemical
structures and reactions in environmental systems, as well as on
the analytical techniques required to study and monitor these
systems. The series is aimed at promoting rigorous analysis and
understanding of physicochemical functioning of environmental
systems.
Cellulose is the most abundant organic polymer on earth. In
solution, cellulose derivatives can form liquid crystals which take
on characteristics of the solid state with unique optical and
physico-mechanical properties. The author presents an overview of
modern developments in the physical chemistry of solutions of
cellulose and its derivatives. Physical Chemistry of Non-aqueous
Solutions of Cellulose and Its Derivatives discusses:
A bestseller in its first edition, Liquid Detergents, Second Edition captures the most significant advances since 1996, maintaining its reputation as a first-stop reference in all fundamental theories, practical applications, and manufacturing aspects of liquid detergents. Featuring new material and updates in every chapter, the book expands its coverage of emulsions to include nanoemulsions, adds new data to elucidate the rheology of current commercial detergent raw materials as compared to finished products, and offers a more complete theoretical treatment of the aggregation in non-aqueous solvents. The book now covers all rheology modifiers and thickeners for detergent applications, antibacterial and sensorial light-duty liquid products, color/fabric care and wrinkle reduction in heavy-duty liquid detergents, and household cleaning wipes in specialty liquid household surface cleaners. Rewriting the chapters on the latest improvements and growing benefits in fabric softeners, liquid hand soaps and body washes, and shampoos and conditioners, the latter contains extensive summaries of patents for various new products and technologies. The final chapter, dedicated to the manufacturing of liquid detergents, offers a discussion on continuous vs. batch processes and micro-contamination. The most comprehensive guide of its kind, Liquid Detergents, Second Edition, is a balanced and practical reference that will continue to inspire students, researchers, chemists, and product developers in detergent industry, surfactant science and industrial chemistry.
Oxide-based materials and structures are becoming increasingly important in a wide range of practical fields including microelectronics, photonics, spintronics, power harvesting, and energy storage in addition to having environmental applications. This book provides readers with a review of the latest research and an overview of cutting-edge patents received in the field. It covers a wide range of materials, techniques, and approaches that will be of interest to both established and early-career scientists in nanoscience and nanotechnology, surface and material science, and bioscience and bioengineering in addition to graduate students in these areas. Features: Contains the latest research and developments in this exciting and emerging field Explores both the fundamentals and applications of the research Covers a wide range of materials, techniques, and approaches
Supramolecular aggregation-driven by weak non-covalent interactions, such as van der Waals, - interactions, hydrogen bonding, and electrostatic-has been utilized to build sensing platforms with improved selectivity and sensitivity. Supramolecular aggregates, owing to cooperative interactions, higher sensitivity and selectivity, relatively weak and dynamic non-covalent interactions, and environmental adaptation, have achieved better sensing performance than that of molecular sensory systems that rely on sensors with delicate structures. Aggregation of Luminophores in Supramolecular System: From Mechanisms to Applications describes recent advances in supramolecular chemistry, in which the luminophores are almost non-luminescent in the molecular state, but become highly emissive in the aggregate state. These advances bring new opportunities and challenges for the development of supramolecular chemistry. The intermolecular non-covalent interactions have been considered to be the main driving forces for fabricating supramolecular systems with aggregating luminophores and have an important influence on the luminescence properties of the probes. Based on these unique properties, luminescent supramolecular aggregates have greatly promoted the development of novel materials for applications as sensors, bio-imaging agents, organic electronic devices, and in the field of drug delivery. Features: Discussion of fundamental and interdisciplinary aspects of the aggregation in supramolecular systems. Narration of intermolecular interactions and the photophysical phenomenon of aggregation in supramolecular systems. Comparative discussion on recent developments in aggregation-induced quenching (AIQ) and aggregation-induced emission (AIE), and drawbacks of AIQ. Description of the technological applications of aggregation as biological sensors, chemical sensors, organic electronic materials, and in the field of drug delivery. A convenient format for checking formulas and definitions. This book surveys highlights of the progress made in the field of the aggregation of luminophores in supramolecular chemistry. It is hoped that the work will form a foundation (and indeed a motivation) for new workers in the area, as well as also being useful to experienced supramolecular chemists. It may also aid workers in the biological area to see Nature's aggregation in a new light. Further, the approach employed has been designed to provide readable background material for use with graduates, senior undergraduates, research professionals, and industries.
Surface and colloid chemistry principles impact many aspects of our daily lives, ranging from the cleaners and cosmetics we use to combustion engines and cement. Exploring the range of this field of study, Surface and Colloid Chemistry provides a detailed analysis of its principles and applications and demonstrates how they relate to natural phenomena and industrial processes. Surface and colloid chemistry at work in nature and industry: rain drops combustion engines soap bubbles foam food products air pollution waste-water treatment washing and cleaning cosmetics painting and printing oil and gas production oil spills plastics and polymers biology and pharmaceuticals milk products cement adhesive coal The book begins with an introduction to surfaces and colloids. It describes basic considerations regarding liquids and capillarity, and examines the liquid-solid interface phenomena. It explores the physicochemical properties of surfactants, Langmuir-Blodgett films, adsorption on solid surfaces, and adsorption as it relates to cleaning processes. Then the author examines colloidal systems and thin liquid films before moving on to emulsion science and technology. The final chapter provides examples of applications in science and a range of industries. Examples and Illustrations Integrating real-world examples throughout the text, this volume stimulates readers to consider both fundamental theory and industrial applications. More than 100 figures elucidate the concepts described in the text. Sample questions and answers are provided where appropriate, along with detailed data and discussions. Pertinent references are offered to facilitate further study.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
"Intelligent Coatings for Corrosion Control" covers the most
current and comprehensive information on the emerging field of
intelligent coatings. The book begins with a fundamental discussion
of corrosion and corrosion protection through coatings, setting the
stage for deeper discussion of the various types of smart coatings
currently in use and in development, outlining their methods of
synthesis and characterization, and their applications in a variety
of corrosion settings. Further chapters provide insight into the
ongoing research, current trends, and technical challenges in this
rapidly progressing field.
The statistical mechanical theory of liquids and solutions is a fundamental area of physical sciences with important implications in other fields of science and for many industrial applications. This book introduces equilibrium statistical mechanics in general, and statistical mechanics of liquids and solutions in particular. A major theme is the intimate relationship between forces in a fluid and the fluid structure - a relationship that is paramount for the understanding of the subject of interactions in dense fluids. Using this microscopic, molecular approach, the text emphasizes clarity of physical explanations for phenomena and mechanisms relevant to fluids, addressing the structure and behavior of liquids and solutions under various conditions. A notable feature is the author's treatment of forces between particles that include nanoparticles, macroparticles, and surfaces. The book provides an expanded, in-depth treatment of simple liquids and electrolytes in the bulk and in confinement. Provides an introduction to statistical mechanics of liquids and solutions with special attention to structure and interactions. Offers an extensive presentation starting with the basics of statistical mechanics to modern aspects of the theory of liquids and solutions, including intermolecular interactions in fluids. Treats both homogeneous bulk fluids and inhomogeneous fluids near surfaces and in confinement. Takes a microscopic, molecular approach that combines physical transparency, theoretical sharpness and a pedagogical and accessible style. Gives explicit and clear textual explanations and physical interpretations for any mathematical relationships and derivations. Goes deeper than the available texts on interactions in fluids, by taking the discussion beyond simple approximations and mean field approaches. The book will be an invaluable resource for advanced undergraduate, graduate, and postgraduate students in physics, chemistry, soft matter science, surface and colloid science and related fields, as well as professionals and instructors in those areas of science.
The field of isotope effects has expanded exponentially in the last decade, and researchers are finding isotopes increasingly useful in their studies. Bringing literature on the subject up to date, Isotope Effects in Chemistry and Biology covers current principles, methods, and a broad range of applications of isotope effects in the physical, biological, and environmental sciences. The authors first explain how kinetic, equilibrium, and anharmonic isotope effects are used to measure the ratio of reaction rates, the ratio between isotopes in thermodynamic equilibrium, and the geometric changes between molecules. The volume describes basic theories, including gas phase, simple condensed phase, small molecule studies, and applications of the Bigeleisen-Mayer theory before covering how isotopes affect molecular geometries, chemical bond breaking, formation and chemical dynamics, and hydrogen transfer. It explores novel, mass-independent isotope effects and problems encountered in hydrogen transfer, tunneling, and exchange. Authors also discuss isotope effects in organic and organometallic reactions and complex enzyme reactions and a unique chapter explores water isotope effects under pressure. Written by internationally recognized researchers from 13 countries, some chapters summarize the perspective of a well-established subject while others review recent findings and on-going research that occasionally present controversial viewpoints using clear scientific arguments and discussion presented by all relevant authors. Isotope Effects in Chemistry and Biology brings together a wide scope of different perspectives and practical developments and applications into a comprehensive reference ofisotope effects that reflect the most current state of the art.
An aerosol is a suspension of fine particles in a gas, usually air, and is generally taken to include both solid and liquid particles with dimensions ranging from a few nanometres up to around 100 micrometres in diameter. Aerosol sicence is the study of the physics and chemistry of aerosol behaviour and this includes techniques of generating particles of nanometre and micrometre dimensions: size classification and measurement, transport and deposition properties: chemical properties of aerosols in the atmosphere and in industry, as well as health effects from inhalation and industrial gas cleaning technology. Aerosols have important commercial implications, e.g. pressure-packaged aerosol' products, agricultural sprays, atmospheric visibility and high technology materials and knowledge of aerosol properties is important in a wide range of disciplines, including industrial hygiene, air pollution, medicine, agriculture, meteorology and geochemistry. Written by an international team of contributors, this book forms a timely, concise and accessible overview of aerosol science and technology. Chemists, technologists and engineers new to aerosol science will find this book an essential companion in their studies of the subject. Those more familiar with aerosols will use it as an essential source of reference.
This book describes hydration structures of proteins by combining experimental results with theoretical considerations. It is designed to introduce graduate students and researchers to microscopic views of the interactions between water and biological macromolecules and to provide them with an overview of the field. Topics on protein hydration from the past 25 years are examined, most of which involve crystallography, fluorescence measurements, and molecular dynamics simulations. In X-ray crystallography and molecular dynamics simulations, recent advances have accelerated the study of hydration structures over the entire surface of proteins. Experimentally, crystal structure analysis at cryogenic temperatures is advantageous in terms of visualizing the positions of hydration water molecules on the surfaces of proteins in their frozen-hydrated crystals. A set of massive data regarding hydration sites on protein surfaces provides an appropriate basis, enabling us to identify statistically significant trends in geometrical characteristics. Trajectories obtained from molecular dynamics simulations illustrate the motion of water molecules in the vicinity of protein surfaces at sufficiently high spatial and temporal resolution to study the influences of hydration on protein motion. Together with the results and implications of these studies, the physical principles of the measurement and simulation of protein hydration are briefly summarized at an undergraduate level. Further, the author presents recent results from statistical approaches to characterizing hydrogen-bond geometry in local hydration structures of proteins. The book equips readers to better understand the structures and modes of interaction at the interface between water and proteins. Referred to as "hydration structures", they are the subject of much discussion, as they may help to answer the question of why water is indispensable for life at the molecular and atomic level.
Molecular and Colloidal Electro-Optics presents cohesive coverage from internationally recognized experts on new approaches and developments in both theoretical and experimental areas of electro-optic science. It comprises a well-integrated yet multi-disciplinary treatment of fundamental principles, strategies, and applications of electro-optic techniques for the characterization of macromolecular, small-particle, and nanomolecular systems. Following a historical review of post-war advances in electro-optics of disperse systems, the first part of the book focuses on the latest achievements in electro-optic theory, particularly low-frequency relaxation. It offers comparative discussions and experimental data to accompany different viewpoints on the origin of the low-frequency effects and multiple theoretical constructions. The second part highlights the unique advantage of using electro-optics as an alternative to conventional characterization and analysis of colloidal systems. Demonstrating the sensitivity of electro-optic methods to interparticle interactions, the book explains how these methods are used to analyze particle surface electric states, evaluate phase transitions, and determine physical properties. As the first treatment of this subject to surface in more than fifteen years, Molecular and Colloidal Electro-Optics is a definitive, up-to-date portrait of modern colloidal electro-optic science. This one-stop reference to the latest theory, methods, and applications is ideal for advanced graduate students and researchers in biophysical chemistry, microbiology, polymer, colloid, and nanoscience.
This new edition features research from nearly 60 of the profession's most distinguished international authorities. Recognizing emerging developments in biopolymer systems research with fully updated and expanded chapters, the second edition discusses the biopolymer-based multilayer structures and their application in biosensors, the progress made in the understanding of protein behaviour at the air-water interface, experimental findings in ellipsometry and reflectometry, and recent developments concerning protein interfacial behaviour in microfabricated total analysis systems and microarrays. With over 3000 references, this is an essential reference for professionals and students in surface, pharmaceutical, colloid, polymer, and medicinal chemistry; chemical, formulation, and application engineering; and pharmacy.
This book provides a cross section of the theoretical and practical results achieved in gas-solid and liquid-solid adsorption. It contains monographs at a scientific level and some chapters include parts that can be used by Ph.D.-level students or by researchers working in industry.
This book examines methods particularly well suited for either a- or b-C-glycoside formation. It helps field workers quickly select the best method for synthesizing a particular type of C-glycoside. The use of C-glycosides as synthons in natural product synthesis is also addressed.
Over the past several decades there has been increasing research interest in thermodynamics as applied to biological systems. This concerns topics such as muscle work and internal energy such as fat and starch. Applications of the first and second laws of thermodynamics to the human body are important to dieticians and health science experts, and applications of these concepts to the animal body are a major concern of animal scientists. This book covers these key topics, which are typically not covered in classic or traditional thermodynamics texts used in mechanical and chemical engineering.
Expensive, delicate, and difficult to operate, femtosecond lasers have already won two Nobel Prizes and created multi-billion dollar industries. As these lasers break out of laboratories for use in real-world large-scale applications, the number of people using them increases. This book provides a fresh perspective on femtosecond lasers, discussing how they are soon to become a universal light source, spanning any timescale and generating any wavelength of light. Starting from the basics of light itself, this book presents in an everyday manner, with clear illustrations and without formulas, what makes this class of lasers so versatile and the future of many more applications. Many of the subjects covered in this book are described in plain words for the first time.
This volume chronicles the proceedings of the Third International Symposium on Contact Angle, Wettability and Adhesion held in Providence, Rhode Island, May 20aEURO"23, 2002. This symposium was held to provide a forum to update and consolidate the research activity on this topic. The world of wettability is very wide as it plays an extremely important role in a legion of technological areas. This volume contains a total of 25 papers covering myriad aspects of contact angle and wettability. All manuscripts were rigorously peer-reviewed and all were revised and properly edited before inclusion in this volume. This book is divided into three parts: General Papers; Contact Angle Measurements/Determination and Solid Surface Free Energy; and Wetting and Spreading: Fundamental and Applied Aspects. The topics covered include: fundamental aspects of contact line region; effect of adsorbed vapor on liquidaEURO"solid adhesion; molecular origin of contact angles; various factors influencing contact angle measurements; different kinds of contact angles; various ways to measure contact angles; contact angle hysteresis; determination of solid surface free energies via contact angles; contact angle measurements on various materials (smooth, rough, porous, heterogeneous); factors influencing/dictating wetting and spreading phenomena; ultrahydrophobic polymer surfaces; switchable wettability; reactive wetting; wetting by nanocrystallites; dewetting; wetting of self-assembled monolayers; reversible wetting of structured surfaces; wetting in granular and porous media; relationship between wetting and adhesion; relevance/importance of wetting and surface energetics in technological applications, including food industry. This volume and its predecessors containing bountiful information will be of great interest and value to everyone interested in the contemporary R&D activity in the fascinating world of contact angles and wettability. The information garnered in these volumes will hopefull
Featuring contributions from leading experts, Organic Photochemistry and Photophysics is a unique resource that addresses the organic photochemistry and photophysical behavior in aromatic molecules, thiocarbonyls, selected porphyrins, and metalloporphyrins. The book presents theories pertaining to radiative and radiationless transitions. It describes excited-state proton-transfer reactions of aromatic compounds and the physical, energetic, and environmental effects of atom transfer reactions. The text discusses the role of the carbonyl and azo groups in ketones and azoalkanes in the development of photochemistry, followed by a review of nucleophilic substitution reactions in the photochemistry of aromatics (also called photosubstitution) and the various atomic bonds that result from these reactions. The book presents studies that explain the factors that govern the nature and efficiencies of SET-promoted photochemical reactions. It then focuses on photoamination as a convenient, powerful, and environmentally friendly synthetic process for transforming a variety of substrates into the corresponding aminated compounds. The final chapter explores how dye structure affects the sequence-dependence of DNA binding, which has potential applications in nonlinear optics and DNA detection as well as incorporating DNA into various nanostructures and devices. With an emphasis on the current uses of light in both materials chemistry and medicinal chemistry, this book serves as a comprehensive resource on photochemical reactions and discusses topics that are useful for researchers as well as newcomers in the fields of photochemistry, photobiology, photomedicine, and photophysics |
You may like...
Cyclopedia of Applied Electricity - a…
Chicago American School
Hardcover
R1,014
Discovery Miles 10 140
Portfolio Management - A practical guide
APM Portfolio Management SIG
Paperback
R680
Discovery Miles 6 800
|