![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Summarizing our present knowledge of the structures and chemistry of small organic cations in the gas phase, Assigning Structures to Ions in Mass Spectrometry presents the methods necessary for determining gas-phase ion structures. It is a comprehensive resource of background material that is essential for the interpretation and understanding of organic mass spectra. Following a historical introduction of chief discoveries, the book surveys current experimental methods for ion production and separation as well as those designed to reveal qualitative and quantitative aspects of gas-phase ions. It also examines the computational chemistry and theoretical calculations that provide complementary thermochemical, structural, and mechanistic information. Five selected case studies illustrate specific challenges associated with ion structure assignment and thermochemical problems. The last major section of the book contains the data for describing or identifying all ions containing C alone and C with H, O, N, S, P, halogens, and small organic cations. Presenting material written by leading researchers in the field, Assigning Structures to Ions in Mass Spectrometry underscores the importance of understanding the behavior of small organic ions and gas-phase ion chemistry for making new ion structure assignments
From anti-aging creams to make-up, surfactants play a key role as delivery systems for skin care and decorative cosmetic products. Surfactants in Personal Care Products and Decorative Cosmetics, Third Edition presents a scientific basis in surfactant science and recent advances in the industry necessary for understanding, formulating, and testing surfactant-based cosmetics and cosmeceuticals. Presenting a new perspective from the previous edition, this book details the function of emulsions, microemulsions, micelles, and nanostructures in the formulation of personal care products and decorative cosmetics and examines their ability to deliver specific benefits to the skin. This edition begins by describing new research into skin structure and cellular processes. Then it presents the latest methods and techniques for substantiating claims and assessing the effectiveness of moisturizers, anti-aging treatments, and sunscreens. Subsequent chapters focus on surfactant solution properties, surfactant emulsions, nanotechnology, cleanser/conditioner systems, and pigment dispersions. Following a detailed examination on the role of surfactants in finished pigmented products, this edition also discusses optimal formulation strategies and surfactant raw materials for enhancing pigmented products. The third edition of Surfactants in Personal Care Products and Decorative Cosmetics, Third Edition helps formulators identify and overcome the challenges involved in developing new applications and enhancing the benefits of cosmetic and cosmeceutical products.
Micelles are prevalent in naturally occurring and biological catalytic reactions. However, it is only in recent decades that scientists have developed kinetic models clarifying how micelle-mediated catalysis works at a molecular level. Written by a leading expert in the field, Micellar Catalysis is an in-depth examination of how micelles affect reaction mechanisms and reaction rates in organic and inorganic reactions. The book first discusses the structural and chemical properties of micelles and the role of thermodynamics, concentration, and additives in forming micelles. Demonstrating how intermolecular forces influence the reaction mechanisms, the author presents kinetic models for reactions catalyzed by normal micelles, as well as mixed micelles and metallomicelles. The book also compares various types of catalytic reactions with and without micelles to quantify their effect on reaction rates and rate constants. Using this information, it illustrates how micelles can modify reaction rates and improve catalytic efficiency, particularly for industrial processes. The final chapter explains the principles of kinetics used for data analysis. Focused on kinetic, chemical, and physical aspects of micelle-mediated reactions, this book offers clear insight into the complex mechanisms that occur in biological reactions. Micellar Catalysis is an essential source of reference for scientists involved in the research and development of micelles for industrial and biochemical applications.
Thoroughly revised and reorganized, the second edition of Interfacial Forcesin Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial properties and structure of liquid water New material throughout the text on the interplay between macroscopic-scale repulsions and microscopic-scale attractions in protein adsorption A new chapter covering interfacial tension determination A new chapter examining the kinetics and energetics of protein adsorption onto metal oxide surfaces Dr. van Oss describes the nature of the various manifestations of hydrophobic interactions as well as of hydration pressure and analyzes the measurement of the contact angles that result when liquid droplets are deposited on flat solids. He also covers coacervation and complex coacervation, discusses the determination methods of electrokinetic potentials, and treats some of the lesser-known properties of water, such as cluster formation and the hydrophobicity of the water-air interface. Principally involved in multiple applications of colloids and interface science for more than 50 years, Carel Jan van Oss is Editor Emeritus of Immunological Investigations and Founding Editor of Preparative Biochemistry and Biotechnology and of Separation and Purification Reviews. He is an editorial advisor for the Journal of Dispersion Science and Technology. In addition to these Taylor & Francis journals, Dr. van Oss is the author, coauthor, or editor of eleven books, including Colloid & Surface Properties of Clays and Related Minerals (2002), and over 350 scientific papers and chapters.
Since the publication of the second edition of this handbook in 1993, the field of photochemical sciences has continued to expand across several disciplines including organic, inorganic, physical, analytical, and biological chemistries, and, most recently, nanosciences. Emphasizing the important role light-induced processes play in all of these fields, the Handbook of Photochemistry, Third Edition provides quick and convenient access to chemical and physical data that are crucial to photochemical investigations from the planning and experimentation phases to the interpretation of results. The third edition of the Handbook of Photochemistry offers detailed overviews of the photochemical processes that occur in organic molecules and transition metal complexes, written by leading experts around the world. The authors maintain the highly regarded organization of data from previous editions while updating and expanding its tables with data pertaining to hundreds of new compounds. The book now contains sections focusing on metal complexes and organometallic compounds, offering photophysical and quenching data as well as reduction potential values, a key factor in photochemical electron transfer processes. It also features new information on light sources and filters, chemical actinometry, solutions to common problems in photoluminescence measurements, and lab-friendly techniques pertaining to experimental UV/visible spectroscopy and irradiation methodologies. The Handbook of Photochemistry delivers an exhaustive, up-to-date collection of photophysical and electrochemical data on organic compounds and transition metal complexes. It represents an invaluable compilation of complementary data, background information, and references for students, researchers, and spectroscopists performing a vast assortment of photochemical experiments.
In spite of the apparent simplicity of silica's composition and structure, scientists are still investigating fundamental questions regarding the formation, constitution, and behavior of colloidal silica systems. Colloidal Silica: Fundamentals and Applications introduces new information on colloid science related to silica chemistry as well as theoretical and experimental aspects of significant areas of colloidal silica science and technology. This resource is dedicated to helping researchers find new uses of silica and answers to practical problems as its industrial use continues to grow steadily in traditional and novel areas. Written by leading silica scientists around the world, this book reflects developments in the field since silica scientist Ralph K. Iler published his authoritative book on silica chemistry in 1979. It discusses properties and methods of characterization, synthesis, and preparation of silica in terms of industrial applications. Following an analysis of the surface chemistry of various silicas, the book explores methods for measuring particle size and useful characterization techniques for determining structure, stability, and reactivity. The authors then focus on various studies, analytical methods, and current applications involving silica gels and powders, silica coatings, colloidal silica, and sol-gel technology. Colloidal Silica: Fundamentals and Applications features up-to-date material relating to fields as diverse as catalysis, metallurgy, electronics, glass, ceramics, paper and pulp technology, optics, elastomers, food, health care, and industrial chromatography. It is ideal for scientists interested in silica chemistry and physics as well as those not familiar with the subject.
Emulsions and Emulsion Stability, Second Edition provides comprehensive coverage of both theoretical and practical aspects of emulsions. The book presents fundamental concepts and processes in emulsified systems, such as flocculation, coalescence, stability, precipitation, deposition, and the evolution of droplet size distribution. The book explains how to predict emulsion stability and determine droplet sizes in a variety of emulsion systems. It discusses spontaneous emulsification and the formation of "nanoemulsions" as well as droplet-droplet interactions in different electrical fields (electrocoalescence), and the formulation, composition, and preparation variables that contribute to the inversion in emulsion systems. Several chapters emphasize applications such as emulsification encountered in oil spills, asphalt, chemical flooding, acid crude oils, and large-scale industrial wastewater treatment. The survey of experimental characterization methods highlights the importance of thin liquid films in colloidal systems and assesses different NMR applications, ultrasound characterization, video microscopy, and other on-line instrumentation. The last chapter in the book deals with obtaining conductivity measurements as an alternative to online instrumentation. Completely revised and expanded, this second edition of Emulsions and Emulsion Stability offers a well-rounded collection of knowledge that is applicable to all academic and industrial scientists and researchers in the fields of surfactant and emulsion science.
A bestseller in its first edition, Liquid Detergents, Second Edition captures the most significant advances since 1996, maintaining its reputation as a first-stop reference in all fundamental theories, practical applications, and manufacturing aspects of liquid detergents. Featuring new material and updates in every chapter, the book expands its coverage of emulsions to include nanoemulsions, adds new data to elucidate the rheology of current commercial detergent raw materials as compared to finished products, and offers a more complete theoretical treatment of the aggregation in non-aqueous solvents. The book now covers all rheology modifiers and thickeners for detergent applications, antibacterial and sensorial light-duty liquid products, color/fabric care and wrinkle reduction in heavy-duty liquid detergents, and household cleaning wipes in specialty liquid household surface cleaners. Rewriting the chapters on the latest improvements and growing benefits in fabric softeners, liquid hand soaps and body washes, and shampoos and conditioners, the latter contains extensive summaries of patents for various new products and technologies. The final chapter, dedicated to the manufacturing of liquid detergents, offers a discussion on continuous vs. batch processes and micro-contamination. The most comprehensive guide of its kind, Liquid Detergents, Second Edition, is a balanced and practical reference that will continue to inspire students, researchers, chemists, and product developers in detergent industry, surfactant science and industrial chemistry.
Completely revised and expanded throughout, Mixed Surfactant Systems, Second Edition surveys the latest results, newest experimental perspectives, and theoretical investigations of properties, behavior, and techniques applicable to mixed surfactant systems. This important book elucidates core theoretical notions while summarizing results of cutting-edge studies in nanoscale phase separation at monolayers of mixed amphiphiles, nanocapsule preparation through mixtures of cationic and anionic polymer amphiphiles, and the photodegradation of mixed surfactant systems by titanium dioxide. The book provides new sections on topics including: Diffusion of mixed micelles Mixed micelles of fluorinated and conventional surfactants Sponge-like vesicles of mixed surfactants Liquid crystals of mixed surfactants Mixtures of surfactants and polymers Photolysis of mixed surfactants Reflecting the abundance of current and emerging applications in the field, Mixed Surfactant Systems, Second Edition compiles chapters written by world-renowned leaders in industry for an up-to-date scientific account of the dynamics of mixed surfactant systems, including physicochemical properties and behavior of surfactant mixtures in detergency and surfactant precipitation.
Providing in-depth coverage of the technologies and various approaches, Luminous Chemical Vapor Deposition and Interface Engineering showcases the development and utilization of LCVD procedures in industrial scale applications. It offers a wide range of examples, case studies, and recommendations for clear understanding of this innovative science. The book comprises four parts. Part 1 describes the fundamental difference between glow discharge of an inert gas and that of an organic vapor, from which the concepts of Luminous Gas Phase derive. Part 2 explores the various ways of practicing Luminous Vapor Disposition and Treatment depending on the type and nature of substrates. Part 3 covers some very important aspects of surface and interface that could not have been seen clearly without results obtained by application of LCVD. Part 4 offers some examples of interface engineering that show very unique aspects of LCVD interface engineering in composite materials, biomaterial surface and corrosion protection by the environmentally benign process. Timely and up-to-date, the book provides broad coverage of the complex relationships involved in the interface between a gas/solid, liquid/solid, and a solid/solid. The author presents a new perspective on low-pressure plasma and describes key aspects of the surface and interface that could not be shown without the results obtained by LCVD technologies. Features Provides broad coverage of complex relationships involved in interface between a gas/solid, a liquid/solid, and a solid/solid Addresses the importance of the initial step of creating electrical glow discharge Describes the principles of creating chemically reactive species and their growth in the luminous gas phase Focuses on the nature of surface-state of solid and on the creation of imperturbable surface-state by the contacting phase or environment, which is vitally important in creating biocompatible surface, providing super corrosion protection of metals by environmentally benign processes, etc. Offers examples on how to use LCVD in the interface engineering process Presents a new view on low-pressure (low-temperature) plasma and emphasizes the importance of luminous gas phase and chemical reactions that occur in the phase About the author: Dr. Yasuda is one of the pioneers who explored low-pressure plasma for surface modification of materials and deposition of nano films as barrier and perm-selective membranes in the late 1960s. He obtained his PhD in physical and polymer chemistry working on transport properties of gases and vapors in polymers at State University of New York, College of Environmental Science and Forestry at Syracuse, NY. He has over 300 publications in refereed journals and books, and is currently a Professor Emeritus of Chemical Engineering, and Director, Center for Surface Science & Plasma Technology, University of Missouri-Columbia, and is actively engaged in research on the subjects covered by this book.
At the interface of chemical industry operations, equipment manufacturer input, and the scientific literature, Industrial Crystallization of Melts explores and explains melt crystallization and purification in the industrial arena. This comprehensive account details the orderly conversion of melts into solid, salable end materials and procedures for purification by remelting; summarizes key theoretical concepts relating to crystalline matter and instationary heat transfer; and surveys the equipment available for specific processes. It also offers over 100 tested equations, as well as clear-cut methods for handling organic melts that call for special crystallization provisions.
Leading readers through an extensive compilation of surface modification reactions and processes for specific tribological results, this reference compiles detailed studies on various residual stresses, reaction processes and mechanisms, heat treatment methods, plasma-based techniques, and more, for a solid understanding of surface structural changes that occur during various engineering procedures. This unique book explores topics previously ignored in other texts on surface engineering and tribology, offers guidelines for the consideration and design of wear life and frictional performance, and sections on laser impingement and nanometer scale surface modification.
Microporous Media presents new developments from nearly a decade of advancement. Written by a leading researcher in the field, this reference provides examples of the most original scientific and technical research impacting studies in porosity and microporosity, and illustrates methods to forecast the properties of microporous structures for improved electronic, construction, electrical, chemical, and medical applications. The book outlines new results in fractal, self-organization, and polymer theories; pore aging, and percolation; and their various engineering applications, and considers the impact of preparation conditions on the structure and properties of microporous materials.
A complete and up-to-date presentation of the fundamental theoretical principles and many applications of solvent extraction, this enhanced Solvent Extraction Principles and Practice, Second Edition includes new coverage of the recent developments in solvent extraction processes, the use of solvent extraction in analytical applications and waste recovery, and computational chemistry methods for modeling the solvent extraction of metal ions. Offering sound scientific and technical descriptions in a format accessible to students and expedient for researchers and engineers, this edition also features a new chapter on ionic strength corrections and contains more than 850 up-to-date literature citations.
Perturbation theory is a powerful tool for solving a wide variety of problems in applied mathematics, a tool particularly useful in quantum mechanics and chemistry. Although most books on these subjects include a section offering an overview of perturbation theory, few, if any, take a practical approach that addresses its actual implementation Introduction to Perturbation Theory in Quantum Mechanics does. It collects into a single source most of the techniques for applying the theory to the solution of particular problems. Concentrating on problems that allow exact analytical solutions of the perturbation equations, the book resorts to numerical results only when necessary to illustrate and complement important features of the theory. The author also compares different methods by applying them to the same models so that readers clearly understand why one technique may be preferred over another. Demonstrating the application of similar techniques in quantum and classical mechanics, Introduction to Perturbation Theory in Quantum Mechanics reveals the underlying mathematics in seemingly different problems. It includes many illustrative examples that facilitate the understanding of theoretical concepts, and provides a source of ideas for many original research projects.
Understanding the mechanism of physical, chemical and biological change at the microscopic scale is critical for a broad range of science and technology. A common goal is to develop this understanding to the point where it becomes possible to tailor functionality through material design, or by the application of electric, magnetic or optical fields. Across a broad range of disciplines the scientific community is currently frustrated by its inability to dynamically image matter down to the atomic scale. We can at present only observe relatively slow motion changes to structure, or infer dynamical effects via indirect measurements. Yet many critically important processes evolve on the femtosecond timescale and at the molecular and sub-cellular level requiring nanometre and sub-nanometre scale spatial resolution. The properties of light from newly developing photon sources such as free electron lasers (FELs) are dramatically different from those of storage rings (in terms of spectral brightness), and from conventional lasers (in terms of wavelength range). In the course of the last few years FELs and other sources have emerged as exceptionally exciting tools for new science - for example, solution phase chemistry, enzyme and surface catalysis and DNA photo-induced radiation damage. In this volume the topics covered include: Chemical reaction dynamics; Electron dynamics in atoms, molecules and clusters; Correlated systems, surfaces and catalysis; Nanoscale and bio imaging
Oxide-based materials and structures are becoming increasingly important in a wide range of practical fields including microelectronics, photonics, spintronics, power harvesting, and energy storage in addition to having environmental applications. This book provides readers with a review of the latest research and an overview of cutting-edge patents received in the field. It covers a wide range of materials, techniques, and approaches that will be of interest to both established and early-career scientists in nanoscience and nanotechnology, surface and material science, and bioscience and bioengineering in addition to graduate students in these areas. Features: Contains the latest research and developments in this exciting and emerging field Explores both the fundamentals and applications of the research Covers a wide range of materials, techniques, and approaches
Supramolecular aggregation-driven by weak non-covalent interactions, such as van der Waals, - interactions, hydrogen bonding, and electrostatic-has been utilized to build sensing platforms with improved selectivity and sensitivity. Supramolecular aggregates, owing to cooperative interactions, higher sensitivity and selectivity, relatively weak and dynamic non-covalent interactions, and environmental adaptation, have achieved better sensing performance than that of molecular sensory systems that rely on sensors with delicate structures. Aggregation of Luminophores in Supramolecular System: From Mechanisms to Applications describes recent advances in supramolecular chemistry, in which the luminophores are almost non-luminescent in the molecular state, but become highly emissive in the aggregate state. These advances bring new opportunities and challenges for the development of supramolecular chemistry. The intermolecular non-covalent interactions have been considered to be the main driving forces for fabricating supramolecular systems with aggregating luminophores and have an important influence on the luminescence properties of the probes. Based on these unique properties, luminescent supramolecular aggregates have greatly promoted the development of novel materials for applications as sensors, bio-imaging agents, organic electronic devices, and in the field of drug delivery. Features: Discussion of fundamental and interdisciplinary aspects of the aggregation in supramolecular systems. Narration of intermolecular interactions and the photophysical phenomenon of aggregation in supramolecular systems. Comparative discussion on recent developments in aggregation-induced quenching (AIQ) and aggregation-induced emission (AIE), and drawbacks of AIQ. Description of the technological applications of aggregation as biological sensors, chemical sensors, organic electronic materials, and in the field of drug delivery. A convenient format for checking formulas and definitions. This book surveys highlights of the progress made in the field of the aggregation of luminophores in supramolecular chemistry. It is hoped that the work will form a foundation (and indeed a motivation) for new workers in the area, as well as also being useful to experienced supramolecular chemists. It may also aid workers in the biological area to see Nature's aggregation in a new light. Further, the approach employed has been designed to provide readable background material for use with graduates, senior undergraduates, research professionals, and industries.
The modern electron microscope, as a result of recent revolutionary developments and many evolutionary ones, now yields a wealth of quantitative knowledge pertaining to structure, dynamics, and function barely matched by any other single scientific instrument. It is also poised to contribute much new spatially-resolved and time-resolved insights of central importance in the exploration of most aspects of condensed matter, ranging from the physical to the biological sciences.Whereas in all conventional EM methods, imaging, diffraction, and chemical analyses have been conducted in a static - time-integrated - manner, now it has become possible to unite the time domain with the spatial one, thereby creating four-dimensional (4D) electron microscopy. This advance is based on the fundamental concept of timed, coherent single-electron packets, or electron pulses, which are liberated with femtosecond durations. Structural phase transitions, mechanical deformations, and the embryonic stages of melting and crystallization are examples of phenomena that can now be imaged in unprecedented structural detail with high spatial resolution, and ten orders of magnitude as fast as hitherto.No monograph in existence attempts to cover the revolutionary dimensions that EM in its various modes of operation nowadays makes possible. The authors of this book chart these developments, and also compare the merits of coherent electron waves with those of synchrotron radiation. They judge it prudent to recall some important basic procedural and theoretical aspects of imaging and diffraction so that the reader may better comprehend the significance of the new vistas and applications now afoot.This book is not a vade mecum - numerous other texts are available for the practitioner for that purpose. It is instead an in-depth expose of the paradigm concepts and the developed techniques that can now be executed to gain new knowledge in the entire domain of biological and physical science, and in the four dimensions of space and time.
Environmental protection and sustainability are major concerns in today's world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries, and artificial photosynthesis, is vital for solving environmental problems. A practical device requires designing of materials and operational systems; however, a multidisciplinary subject covering microscopic physics and chemistry as well as macroscopic device properties is absent. In this situation, multiscale simulations play an important role. This book compiles and details cutting-edge research and development of atomistic, nanoscale, microscale, and macroscale computational modeling for various electrochemical devices, including hydrogen storage, Li-ion batteries, fuel cells, and artificial photocatalysis. The authors have been involved in the development of energy materials and devices for many years. In each chapter, after reviewing the calculation methods commonly used in the field, the authors focus on a specific computational approach that is applied to a realistic problem crucial for device improvement. They introduce the simulation technique not only as an analysis tool to explain experimental results but also as a design tool in the scale of interest. At the end of each chapter, a future perspective is added as a guide for the extension of research. Therefore, this book is suitable as a textbook or a reference on multiscale simulations and will appeal to anyone interested in learning practical simulations and applying them to problems in the development of frontier and futuristic electrochemical devices.
This book provides a framework for analysing complex systems for which classical thermodynamics is often not applicable. Since the success of the activated process in 1970, diamond growth with simultaneous graphite etching under low pressure has often been regarded as a violation of the second law of thermodynamics. A series of nonequilibrium phase diagrams, which agree excellently with the activated diamond experiments, have been calculated by the author and his coworkers on the basis of reaction coupling. The book goes on to demonstrate how these lead to a complete new systematization of modern thermodynamics.
Surface and colloid chemistry principles impact many aspects of our daily lives, ranging from the cleaners and cosmetics we use to combustion engines and cement. Exploring the range of this field of study, Surface and Colloid Chemistry provides a detailed analysis of its principles and applications and demonstrates how they relate to natural phenomena and industrial processes. Surface and colloid chemistry at work in nature and industry: rain drops combustion engines soap bubbles foam food products air pollution waste-water treatment washing and cleaning cosmetics painting and printing oil and gas production oil spills plastics and polymers biology and pharmaceuticals milk products cement adhesive coal The book begins with an introduction to surfaces and colloids. It describes basic considerations regarding liquids and capillarity, and examines the liquid-solid interface phenomena. It explores the physicochemical properties of surfactants, Langmuir-Blodgett films, adsorption on solid surfaces, and adsorption as it relates to cleaning processes. Then the author examines colloidal systems and thin liquid films before moving on to emulsion science and technology. The final chapter provides examples of applications in science and a range of industries. Examples and Illustrations Integrating real-world examples throughout the text, this volume stimulates readers to consider both fundamental theory and industrial applications. More than 100 figures elucidate the concepts described in the text. Sample questions and answers are provided where appropriate, along with detailed data and discussions. Pertinent references are offered to facilitate further study.
The statistical mechanical theory of liquids and solutions is a fundamental area of physical sciences with important implications in other fields of science and for many industrial applications. This book introduces equilibrium statistical mechanics in general, and statistical mechanics of liquids and solutions in particular. A major theme is the intimate relationship between forces in a fluid and the fluid structure - a relationship that is paramount for the understanding of the subject of interactions in dense fluids. Using this microscopic, molecular approach, the text emphasizes clarity of physical explanations for phenomena and mechanisms relevant to fluids, addressing the structure and behavior of liquids and solutions under various conditions. A notable feature is the author's treatment of forces between particles that include nanoparticles, macroparticles, and surfaces. The book provides an expanded, in-depth treatment of simple liquids and electrolytes in the bulk and in confinement. Provides an introduction to statistical mechanics of liquids and solutions with special attention to structure and interactions. Offers an extensive presentation starting with the basics of statistical mechanics to modern aspects of the theory of liquids and solutions, including intermolecular interactions in fluids. Treats both homogeneous bulk fluids and inhomogeneous fluids near surfaces and in confinement. Takes a microscopic, molecular approach that combines physical transparency, theoretical sharpness and a pedagogical and accessible style. Gives explicit and clear textual explanations and physical interpretations for any mathematical relationships and derivations. Goes deeper than the available texts on interactions in fluids, by taking the discussion beyond simple approximations and mean field approaches. The book will be an invaluable resource for advanced undergraduate, graduate, and postgraduate students in physics, chemistry, soft matter science, surface and colloid science and related fields, as well as professionals and instructors in those areas of science.
The use of silver as an antibacterial agent has been known for thousands of years. This effect can be amplified by simply reducing the size of silver particles to the nanoscale, with an added advantage of reduction in cost and toxicity. Application of silver nanoparticles to textiles can bring considerable advantages, especially for materials that cannot be washed daily or medical support materials. This book describes a novel synthesis method that the author calls "in situ," in which these nanoparticles are obtained directly on materials. The method is simple and easy to apply and can also be considered green because the reducing agent involved is ascorbic acid, commonly known as vitamin C. It neither requires special modifications in the industrial equipment nor special pressure or temperature conditions. It can be used to grow other metals or metal oxides on a material. The book showcases studies carried out on silver nanoparticles by the author over several years, not only in terms of the synthesis but also the morphological characterization of the substrate to which they were applied. It exhibits SEM images displaying the homogeneity of the silver coating, highlighting that sometimes the simplest way is the best way.
The latest edition of the leading forum in chemical physics Edited by Nobel Prize winner Ilya Prigogine and renowned authority Stuart A. Rice, the Advances in Chemical Physics series provides a forum for critical, authoritative evaluations in every area of the discipline. In a format that encourages the expression of individual points of view, experts in the field present comprehensive analyses of subjects of interest. This stand-alone, special topics volume reports recent advances in electron-transfer research, with significant, up-to-date chapters by internationally recognized researchers. Volume 123 collects innovative papers on "Transition Path Sampling," "Dynamics of Chemical Reactions and Chaos," "The Role of Self Similarity in Renormalization Group Theory," and several other related topics. Advances in Chemical Physics remains the premier venue for presentations of new findings in its field. |
![]() ![]() You may like...
System Design through Matlab (R…
Krishna K. Singh, Gayatri Agnihotri
Paperback
R2,464
Discovery Miles 24 640
French Language Learning for Beginner's…
Excel Language Lessons
Hardcover
R543
Discovery Miles 5 430
Spatial Analysis Techniques Using…
Joao Garrott Marques Negreiros
Hardcover
R6,028
Discovery Miles 60 280
Advances in Civil Engineering - Select…
Rao Martand Singh, K.P. Sudheer, …
Hardcover
R9,741
Discovery Miles 97 410
8051 Microcontroller, The: A Systems…
Muhammad Mazidi, Rolin McKinlay, …
Paperback
R2,783
Discovery Miles 27 830
The Science of Learning and Development…
Pamela Cantor, David Osher
Hardcover
R4,476
Discovery Miles 44 760
|