![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Charge density analysis of materials provides a firm basis for the evaluation of the properties of materials. The design and engineering of a new combination of metals requires a firm knowledge of intermolecular features. Recent advances in technology and high-speed computation have made the crystal X-ray diffraction technique a unique tool for the determination of charge density distribution in molecular crystal. Methods have been developed to make experimental probes capable of unraveling the features of charge densities in the intra- and inter-molecular regions of crystal structures. In Metal and Alloy Bonding - An Experimental Analysis, the structural details of materials are elucidated with the X-ray diffraction technique. Analyses of the charge density and the local and average structure are given to reveal the structural properties of technologically important materials. Readers will gain a new understanding of the local and average structure of existing materials. The electron density, bonding, and charge transfer studies in Metal and Alloy Bonding - An Experimental Analysis contain useful information for researchers in the fields of physics, chemistry, materials science, and metallurgy. The properties described in these studies can contribute to the successful engineering of these technologically important materials.
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.
Guides the reader into the mysteries of water. Provides a state-of-the-art overview in computer simulations and experiments on water. Brings together leading scientists in the field of water.
Volume 45 in the highly successful series Handbook of Porphyrin Science presents three very informative chapters of significant topical interest to researchers in the broad field of porphyrin science. The first chapter (Chapter 215) systematically describes in great detail the many synthetic methods utilized for the preparation of both metal-free and metallo-phthalocyanines. In the second chapter (Chapter 216), new developments in the synthesis, structure, and circular dichroism of chiral porphyrin systems are discussed in depth. The third and final chapter in this volume (Chapter 217) describes up-to-date advances in the use of computational methodology for the design and synthesis of functionally useful tetrapyrroles such as phthalocyanines, porphyrins and 9. The volume concludes with a useful comprehensive index.The overall emphasis of Volume 45 of the Handbook of Porphyrin Science series, centers on synthetic methodology and processes, with a diversion in Chapter 217 to include predictive computational methodology, and in Chapter 216 to address the importance of chirality in tetrapyrrole systems. All three chapters will be of interest to researchers in the field and should provide powerful tools for anyone involved in the chemistry of phthalocyanines, porphyrins and related systems.
With contributions from experts from both academia and industry, this book provides up-to-date reviews and promising approaches for corrosion control of metals and alloys via sustainable biopolymers and carbon nanomaterials coatings, focusing on the wonder material "graphene" which is more solid than steel. This book delivers essential information for improving the environmental and economic viability of current coating technologies. It is also a valuable reference for those who are interested in corrosion science and corrosion protection including professionals from the industry as well as academia.
Covers important supramolecules. Contains compilation of the different threads of supramolecular chemistry. Covers important supramolecules. Covers important environmental and biological applications. Covers important techniques at relevant places.
Unimolecular Reactions Second Edition Kenneth A. Holbrook, University of Hull, UK Michael J. Pilling, University of Leeds, UK Struan H. Robertson, University of Leeds, UK Representing major advances in the area of gas kinetics in the last twenty-five years, this second edition of Unimolecular Reactions has been considerably re-written to include important recent progress in both theory and experiment. New chapters cover the treatment of reactions with "loose" transition states, the Master equation and the approximate forms of Statistical Adiabatic Channel Theory. Extensive illustrations highlight both established activation methods and newer techniques such as the use of infrared and UV lasers, overtone excitation, molecular beam experiments and mass spectrometric methods. Like the first edition, this volume will allow the reader to be able to apply theoretical results to experimental data. It will constitute a very valuable handbook for graduate students and experimental researchers. Contents include: RRKM Theory and its Numerical Applications; The Evaluation of Sums and Densities of Molecular Quantum States; Reactions with Loose Transition States; Master Equation Analysis of Collisional Energy Transfer; Approximate Techniques of Unimolecular Reactions; Energy Transfer; Kinetic Isotope Effects in Unimolecular Reactions; Experimental Data.
This book chronicles the proceedings of the Second Symposium on Particles in Gases and Liquids: Detection, Characterization and Control held as a part of the 20th Annual Fine Particle Society meeting in Boston, August 21-25, 1989. As this second symposium was as successful as the prior one, so we have decided to hold symposia on this topic on a regular (biennial) basis and the third symposium in this series is scheduled to be held at the 22nd Annual Meeting of the Fine Particle Society in San Jose, California, July 29-August 2, 1991. l As pointed out in the Preface to the prior volume in this series that recently there has been tremendous concern about yield losses due to unwanted particles, and these unwelcome particles can originate from a legion of sources, including process gases and liquids. Also all signals indicate that in the future manufacture of sophisticated and sensitive microelectronic components (with shrinking dimensions) and other precision parts, the need for detection, characterization, analysis and control of smaller and smaller particles will be more intensified.
The sixth edition of this highly successful textbook provides a detailed introduction to Monte Carlo simulation in statistical physics, which deals with the computer simulation of many-body systems in condensed matter physics and related fields of physics and beyond (traffic flows, stock market fluctuations, etc.). Using random numbers generated by a computer, these powerful simulation methods calculate probability distributions, making it possible to estimate the thermodynamic properties of various systems. The book describes the theoretical background of these methods, enabling newcomers to perform such simulations and to analyse their results. It features a modular structure, with two chapters providing a basic pedagogic introduction plus exercises suitable for university courses; the remaining chapters cover major recent developments in the field. This edition has been updated with two new chapters dealing with recently developed powerful special algorithms and with finite size scaling tools for the study of interfacial phenomena, which are important for nanoscience. Previous editions have been highly praised and widely used by both students and advanced researchers.
Heterogeneous catalytic oxidation is a key technique used in the
large-scale production of organic chemicals. However, the recent
climate of environmental awareness has seen an increase in its use
as a technique for reducing polluting emissions from chemical
factories. Heterogeneous Catalytic Oxidation; Fundamental and
Technological Aspects of the Selective and Total Oxidation of
Organic Compounds presents the essence of catalytic chemistry,
describing the structure of catalysts, the technology in which they
are used and the chemical transformations that occur during the
reaction. Including descriptions of how reactants and products
interact on the molecular scale with the active sites on the
surface of these materials, this text uses catalytic oxidation to
explain the principles of heterogeneous catalysis. Following an
introduction to the principles and chemistry of catalytic
oxidation, Professor Hodnett uses detailed case studies which
represent and illustrate the fundamentals and technology for
specific aspects of heterogeneous catalytic oxidation, including:
This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Volume 19 is centered on the theme of macroscopic modeling, and discusses topics such as: Monte Carlo simulation techniques, computing hydrophobicity, classical trajectory simulations within the Born-Oppenheimer approximation, and the theory behind the widely used Poisson-Boltzmann equation. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)."
A stand-alone, monograph present results on mechanochemical synthesis of nanostructured composite materials on the base of inorganic and organic components The book summarizes and systematizes the results of a fundamentally new complex approach to the creation of composite polymer-inorganic systems by mechanochemical treatment, both as a result of the traditional approach with the use of dynamic mills (mechanical reactors) and ultrasonic action on powder mixtures In addition, the book will present a chapter that will focus on the method of mechanochemical preparation of materials for high-energy systems, which are the most promising, since it allows the most productive management of the formation of new structural compositions that increase the energy intensity of the system.
This thesis presents a series of experimental techniques based on scanning probe microscopy, which make it possible access the degree of freedom of protons both in real and energy space. These novel techniques and methods allow direct visualization of the concerted quantum tunneling of protons within the hydrogen-bonded network and quantification of the quantum component of a single hydrogen bond at a water-solid interface for the first time. Furthermore, the thesis demonstrates that the anharmonic quantum fluctuations of hydrogen nuclei further weaken the weak hydrogen bonds and strengthen the strong ones. However, this trend was reversed when the hydrogen bond coupled to the local environment. These pioneering findings substantially advance our understanding of the quantum nature of H bonds at the molecular level.
This book is a compilation of different methods of formulating and solving inverse problems in physics from classical mechanics to the potentials and nucleus-nucleus scattering. Mathematical proofs are omitted since excellent monographs already exist dealing with these aspects of the inverse problems.The emphasis here is on finding numerical solutions to complicated equations. A detailed discussion is presented on the use of continued fractional expansion, its power and its limitation as applied to various physical problems. In particular, the inverse problem for discrete form of the wave equation is given a detailed exposition and applied to atomic and nuclear scattering, in the latter for elastic as well as inelastic collision. This technique is also used for inverse problem of geomagnetic induction and one-dimensional electrical conductivity. Among other topics covered are the inverse problem of torsional vibration, and also a chapter on the determination of the motion of a body with reflecting surface from its reflection coefficient.
- Covers topics such as fundamentals of electrochemistry for energy applications of COFs not covered in competing titles - Provides details about recent methods used for synthesis and characterization of COFs-based nanomaterials, particularly of energy applications - Covers the state-of-the-art development in COFs and their applications in green energy generation and storage - Widens fundamentals about COFs and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity - Provides new directions to scientists, researchers, and students to better understand the principle, technologies, and applications of COFs
State of the Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More, Volume 79 in the Advances in Quantum Chemistry series, presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. Chapters in this new release include Computing accurate molecular properties in real space using multiresolution analysis, Self-consistent electron-nucleus cusp correction for molecular orbitals, Correlated methods for computational spectroscopy, Potential energy curves for the NaH molecule and its cation with the cock space coupled cluster method, and much more.
Plasma methods that effectively combine ultraviolet radiation, active chemicals, and high electric fields offer an alternative to conventional water treatment methods. However, knowledge of the electric breakdown of liquids has not kept pace with this increasing interest, mostly due to the complexity of phenomena related to the plasma breakdown process. Plasma Discharge in Liquid: Water Treatment and Applications provides engineers and scientists with a fundamental understanding of the physical and chemical phenomena associated with plasma discharges in liquids, particularly in water. It also examines state-of-the-art plasma-assisted water treatment technologies. The Physics & Applications of Underwater Plasma Discharges The first part of the book describes the physical mechanism of pulsed electric breakdown in water and other liquids. It looks at how plasma is generated in liquids and discusses the electronic and bubble mechanism theories for how the electric discharge in liquid is initiated. The second part of the book focuses on various water treatment applications, including: Decontamination of volatile organic compounds and remediation of contaminated water Microorganism sterilization and other biological applications Cooling water treatment Drawing extensively on recent research, this one-stop reference combines the physics and applications of electric breakdown in liquids in a single volume. It offers a valuable resource for scientists, engineers, and students interested in the topic of plasmas in liquids.
Calculations in Chemical Kinetics for Undergraduates aims to restore passion for problem solving and applied quantitative skills in undergraduate chemistry students. Avoiding complicated chemistry jargon and providing hints and step wise explanations in every calculation problem, students are able to overcome their fear of handling mathematically applied problems in physical chemistry. This solid foundation in their early studies will enable them to connect fundamental theoretical chemistry to real experimental applications as graduates. Additional Features Include: Contains quantitative problems from popular physical chemistry references. Provides step by step explanations are given in every calculation problem. Offers hints to certain problems as "points to note" to enable student comprehension. Includes solutions for all questions and exercises. This book is a great resource for undergraduate chemistry students however, the contents are rich and useful to even the graduate chemist that has passion for applied problems in physical chemistry of reaction Kinetics.
Electroinduced Drift of Neutral Charge Clusters in Salt Solutions presents studies of the processes accompanying the effect of periodic electric and magnetic fields on salt solutions in polar dielectric liquids. The authors explain phenomena from a physical point of view, without theoretical constructions and mathematical calculations. This is done in order to make the book accessible to a wide audience and to help the reader navigate in a multilateral topic that is touched upon when studying processes that occur in liquid media under the external influence of an electromagnetic nature. Additional Features: Explores the phenomenon of selective drift of solvated ions in polar dielectric liquids Applies general principles of electricity and magnetism to describe experimental results Demonstrates how small perturbations of the equilibrium distribution determine not the corrections to the effects but the effects themselves Approaches nonequilibrium molecular physics as a science of physical and chemical processes This book will be useful to specialists, engineers and graduate students, especially those recording and transmitting information in liquid media.
Lithium-ion batteries are the most promising among the secondary battery technologies, for providing high energy and high power required for hybrid electric vehicles (HEV) and electric vehicles (EV). Lithium-ion batteries consist of conventional graphite or lithium titanate as anode and lithium transition metal-oxides as cathode. A lithium salt dissolved in an aprotic solvent such as ethylene carbonate and diethylene carbonate is used as electrolyte. This rechargeable battery operates based on the principle of electrochemical lithium insertion/re-insertion or intercalation/de-intercalation during charging/discharging of the battery. It is essential that both electrodes have layered structure which should accept and release the lithium-ion. In advanced lithium-ion battery technologies, other than layered anodes are also considered. High cell voltage, high capacity as well as energy density, high Columbic efficiency, long cycle life, and convenient to fabricate any size or shape of the battery, are the vital features of this battery technology. Lithium-ion batteries are already being used widely in most of the consumer electronics such as mobile phones, laptops, PDAs etc. and are in early stages of application in HEV and EV, which will have far and wide implications and benefits to society. The book contains ten chapters, each focusing on a specific topic pertaining to the application of lithium-ion batteries in Electric Vehicles. Basic principles, electrode materials, electrolytes, high voltage cathodes, recycling spent Li-ion batteries and battery charge controller are addressed. This book is unique among the countable books focusing on the lithium-ion battery technologies for vehicular applications. It provides fundamentals and practical knowledge on the lithium-ion battery for vehicular application. Students, scholars, academicians, and battery and automobile industries will find this volume useful.
Surface Structure Modification and Hardening of Al-SI Alloys explores the hardening of material surfaces using concentrated energy flows resulting in the nanostructuring of surface layers. The authors demonstrate how these methods achieve a reduction in plastic deformation of the surface and a more uniform distribution of elastic stresses near the surface during operational use, significantly reducing part failure. It presents results from research and scientific and technological enterprises involved with the modification of light alloy surfaces for use in the automobile and aerospace industries. Additional key features include: Addresses theoretical and experimental research computer simulations of structural phase transformations at the nanolevel to create new materials Details and compares electroexplosion alloying, electron beam processing and electron-plasma alloying of an Al-Si Alloy Explains multiphase plasma jet treatment to obtain high-quality coatings with good and high functional properties This reference is a valuable resource for specialists in the field of physical material science, condensed state physics, metal science and thermal treatment and will be of interest to undergraduate and post-graduate students in these fields.
This timely and unique publication is designed for graduate students and researchers in inorganic and materials chemistry and covers bonding models and applications of symmetry concepts to chemical systems. The book discusses the quantum mechanical basis for molecular orbital concepts, the connections between molecular orbitals and localized views of bonding, group theory, bonding models for a variety of compounds, and the extension of these ideas to solid state materials in band theory. Unlike other books, the concepts are made tangible to the readers by guiding them through their implementation in MATLAB functions. No background in MATLAB or computer programming is needed; the book will provide the necessary skills. Key Features Visualization of the Postulates of Quantum Mechanics to build conceptual understanding MATLAB functions for rendering molecular geometries and orbitals Do-it-yourself approach to building a molecular orbital and band theory program Introduction to Group Theory harnessing the 3D graphing capabilities of MATLAB Online access to a growing collection of applications of the core material and other appendices Bonding through Code is ideal for first-year graduate students and advanced undergraduates in chemistry, materials science, and physics. Researchers wishing to gain new tools for theoretical analysis or deepen their understanding of bonding phenomena can also benefit from this text. About the Author Daniel Fredrickson is a Professor in the Department of Chemistry at the University of Wisconsin-Madison, where his research group focuses on understanding and harnessing the structural chemistry of intermetallic phases using a combination of theory and experiment. His interests in crystals, structure, and bonding can be traced to his undergraduate research at the University of Washington (B.S. in Biochemistry, 2000) with Prof. Bart Kahr, his Ph.D. studies at Cornell University (2000-2005) with Profs. Stephen Lee and Roald Hoffmann, and his post-doctoral work with Prof. Sven Lidin at Stockholm University (2005-2008). As part of his teaching at UW-Madison since 2009, he has worked to enhance his department's graduate course, Physical Inorganic Chemistry I: Symmetry and Bonding, through the incorporation of new material and the development of computer-based exercises.
This revised edition has been updated to meet the minimum requirements of the new Singapore GCE A level syllabus that would be implemented in the year 2016. Nevertheless, this book is also highly relevant to students who are studying chemistry for other examination boards. In addition, the authors have also included more Q&A to help students better understand and appreciate the chemical concepts that they are mastering.
In one handy volume this handbook summarizes the most common synthetic methods for the separation of racemic mixtures, allowing an easy comparison of the different strategies described in the literature.Alongside classical methods, the authors also consider kinetic resolutions, dynamic kinetic resolutions, divergent reactions of a racemic mixture, and a number of "neglected" cases not covered elsewhere, such as the use of circularly polarized light, polymerizations, "ripening" processes, dynamic combinatorial chemistry, and several thermodynamic processes. The result is a thorough introduction to the field plus a long-needed, up-to-date overview of the chemical, biological, and physical methods and their applications. Newcomers to the field, students as well as experienced synthetic chemists will benefit from the highly didactic presentation: Every method is presented in detail, from relatively simple separation problems to advanced complex resolution methods. |
![]() ![]() You may like...
Snyman's Criminal Law
Kallie Snyman, Shannon Vaughn Hoctor
Paperback
Multiscale Models in Mechano and Tumor…
Alf Gerisch, Raimondo Penta, …
Hardcover
R4,282
Discovery Miles 42 820
|