![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Advances in Physical Organic Chemistry, Volume 53, presents the latest reviews of recent work in physical organic chemistry. It provides a valuable source of information that is ideal not only for physical organic chemists applying their expertise to both novel and traditional problems, but also for non-specialists across diverse areas who identify a physical organic component in their approach to research. Its hallmark is a quantitative, molecular level understanding of phenomena across a diverse range of disciplines. Chapters in this updated release include Theoretical models for activation and reaction energies in chemical reactions, Chiral induction in asymmetric dual catalysis, and The transition state.
This volume contains the fourteen papers presented at the NATO-sponsored Ad vanced Research Workshop on the 'Status and Future Developments in the Study of Transport Properties' held in Porto Carras, Halkidiki, Greece from May 29 to May 31, 1991. The Workshop was organised to provide a forum for the discussion among prac titioners of the state-of-the-art in the treatment of the macroscopic, non-equilibrium properties of gases. The macroscopic quantities considered all arise as a result of the pairwise interactions of molecules in states perturbed from an equilibrium, Maxwellian distribution. The non-equilibrium properties of gases have been studied in detail for well over a century following the formulation of the Boltzmann equation in 1872. Since then the range of phenomena amenable to experimental study has expanded greatly from the properties characteristic of a bulk, non-uniform gas, such as the viscosity and thermal conductivity, to the study of differential scattering cross-sections in molecular beams at thermal energies, to studies of spectral-line widths of individual molecules and of Van der Waals complexes and even further. The common thread linking all of these studies is found in the corresponding theory which relates them all to the potential energy function describing the interaction of pairs of molecules. Thus, accompanying the experimental development there has been a corresponding improvement in the theoretical formulation of the quantities characterising the various phenomena."
Rufus Ritchie, a Gentleman and a Scholar, Volume 80 in the Advances in Quantum Chemistry series, celebrates the life and work of Rufus Ritchie, one of the great physicists and gentlemen of the past 100 years. Sections cover Inelastic electron excitation of transition metal atoms on metal surfaces: Kondo resonances as a function of the crystal field splitting, Role of local field effects in surface plasmon characteristics, Correlated model atom in a time-dependent external field: Sign effect in the energy shift, Dipole-bound states contributions to the formation of anionic carbonitriles in the ISM: a multireference approach for C3N, and much more.
Advances in Catalysis, Volume 65, fills the gap between journal papers and textbooks across the diverse areas of catalysis research. For more than 60 years, this series has dedicated itself to record and present the latest progress in the field of catalysis, providing the scientific community with comprehensive and authoritative reviews. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Biophysical Characterization of Proteins in Developing Biopharmaceuticals, Second Edition, presents the latest on the analysis and characterization of the higher-order structure (HOS) or conformation of protein based drugs. Starting from the very basics of protein structure, this book explains the best way to achieve this goal using key methods commonly employed in the biopharmaceutical industry. This book will help today's industrial scientists plan a career in this industry and successfully implement these biophysical methodologies. This updated edition has been fully revised, with new chapters focusing on the use of chromatography and electrophoresis and the biophysical characterization of very large biopharmaceuticals. In addition, best practices of applying statistical analysis to biophysical characterization data is included, along with practical issues associated with the concept of a biopharmaceutical's developability and the technical decision-making process needed when dealing with biophysical characterization data.
This book presents several helpful synthetic methods for diverse multinuclear complexes. The results described can be used to selectively connect mononuclear as well as multinuclear complexes with other metal complexes to construct valuable photofunctional compounds. Using the new synthetic methods, it was possible to selectively connect several types of metal complexes in a single step under relatively mild reaction conditions. This so-called building block approach utilizes various C-C coupling reactions between metal complexes with functional groups as active moieties. Owing to the large pi-conjugation systems, the multinuclear complexes synthesized using coupling reactions showed a strong absorption ability over a wide range of visible light and long emission lifetimes, which are ideal properties for photosensitizers and light absorbers. By combining these coupling methods with the newly developed hydrogenation reactions, the binding mode of the linkers in multinuclear complexes can be modified in order to tune the photophysical properties and photocatalytic ability. As such, the synthesized multinuclear complexes can be used for various purposes, e.g., as photocatalysts and photosensitizers, and in light-harvesting systems. The synthetic methods and strategies presented in this book diversify not only the structures but also functions of multinuclear complexes.
This edited volume focuses on the host-guest chemistry of organic molecules and inorganic systems during synthesis (structure-direction). Organic molecules have been used for many years in the synthesis of zeolitic nanoporous frameworks. The addition of these organic molecules to the zeolite synthesis mixtures provokes a particular ordering of the inorganic units around them that directs the crystallization pathway towards a particular framework type; hence they are called structure-directing agents. Their use has allowed the discovery of an extremely large number of new zeolite frameworks and compositions. This volume covers the main aspects of the use of organic molecules as structure-directing agents for the synthesis of zeolites, including first an introduction of the main concepts, then two chapters covering state-of-the-art techniques currently used to understand the structure-directing phenomenon (location of molecules by XRD and molecular modeling techniques). The most recent trends in the types of organic molecules used as structure-directing agents are also presented, including the use of metal-complexes, the use of non-ammonium-based molecules (mainly phosphorus-based compounds) and the role of supramolecular chemistry in designing new large organic structure-directing agents produced by self-aggregation. In addition the volume explores the latest research attempting to transfer the asymmetric nature of organic chiral molecules used as structure-directing agents to the zeolite lattice to produce chiral enantioselective frameworks, one of the biggest challenges today in materials chemistry. This volume has interdisciplinary appeal and will engage scholars from the zeolite community with a general interest in microporous materials, which involves not only zeolite scientists, but also researchers working on metal-organic framework materials. The concepts covered will also be of interest for researchers working on the application of materials after encapsulation of molecules of interest in post-synthetic treatments. Further the work explores the main aspects of host-guest chemistry in hybrid organo-inorganic templated materials, which covers all types of materials where organic molecules are used as templates and are confined within framework-structured inorganic materials (intercalation compounds). Therefore the volume is also relevant to the wider materials chemistry community.
State of the Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More, Volume 79 in the Advances in Quantum Chemistry series, presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry and biology. Chapters in this new release include Computing accurate molecular properties in real space using multiresolution analysis, Self-consistent electron-nucleus cusp correction for molecular orbitals, Correlated methods for computational spectroscopy, Potential energy curves for the NaH molecule and its cation with the cock space coupled cluster method, and much more.
Liquid 4He and 3He are the purest Bose and Fermi liquids currently found in nature. Understanding their dynamics is fundamental to understanding more complex matter. This book provides an introduction to the subject and develops the theory of zero sound, phonons, rotons, spin and single particle excitations in quantum solids and fluids. Similarities between quantum solids and fluids are drawn wherever possible. Topics include dynamic response functions, neutron studies of solid helium, the nature of excitations in 3He, approximations to the dynamic susceptibility, and intermediate and high momentum transfer, among many others. In offering a critical comparison between theory and up-to-the-minute experimental data, the book provides a comprehensive assessment of our current understanding of collective and single particle excitations in quantum liquids and solids.
This book shows how the fundamentals of electron paramagnetic resonance (EPR) spectroscopy are practically implemented and illustrates the diversity of current applications. The technique is used at various levels, and applications are presented in order of increasing difficulty, with reference to theoretically obtained results. This book features a diverse array of application examples, from fields such as ionizing radiation dosimetry, neurodegenerative diseases, structural transitions in proteins, and the origins of terrestrial life. The final chapter of this book highlights the principles and applications of the technique of ferromagnetic resonance spectroscopy, followed by a brief introduction to advanced EPR techniques such as electron spin echo envelope modulation (ESEEM), hyperfine sub-level correlation (HYSCORE), pulsed electron-electron double resonance (PELDOR), and continuous wave electron nuclear double resonance (ENDOR) experiments.
This book highlights and investigates novel solid-state luminescent properties of crystals with stimuli-responsive behavior. Several novel molecular designs for controlling crystal structures with photo-physical properties are described, with a special focus on external stimuli-responsive properties. The major goal of the material design concept was to capitalize on the chirality of crystals with stimuli-responsive properties. To allow crystals' chirality to be controlled and modified by means of external stimulation, the axial chirality of biaryl moiety was employed and, interestingly, produced several novel mechano- and vapo-responsive luminescent properties based on crystal-to-crystal or single-crystal-to-single-crystal phase transitions. In addition, the book details how the molecular rotation of luminophores in the solid phase can be used to achieve corresponding thermal-responsive phosphorescence. The reports presented here illustrate how the author has succeeded in controlling structural factors in a bulk environment by using molecular design with linking to photo-physical properties. The content will be of great interest to researchers in the field, and to members of chemical and material science societies.
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.
In this book, the authors use molecular dynamics simulations to conduct a comprehensive study of the compression/superheating limit and phase transition of 2D (monolayer, bilayer, and trilayer) water/ice constrained in graphene nanocapillaries. When subjected to nanoscale confinement and under ultrahigh pressure, water and ice behave quite differently than their bulk counterparts, partly because the van der Waals pressure can spark a water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquids. From a mechanical standpoint, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of 2D water. The findings presented here could help us to better understand the phase behavior of 2D confined water/ice.
This book provides an introduction of how radiation is processed in polymeric materials, how materials properties are affected and how the resulting materials are analyzed. It covers synthesis, characterization, or modification of important materials, e.g. polycarbonates, polyamides and polysaccharides, using radiation. For example, a complete chapter is dedicated to the characterization of biodegradable polymers irradiated with low and heavy ions. This book will be beneficial to all polymer scientists in the development of new macromolecules and to all engineers using these materials in applications. It summarizes the fundamental knowledge and latest innovations in research fields from medicine to space.
This book offers a didactic and a self-contained treatment of the physics of liquid and flowing matter with a statistical mechanics approach. Experimental and theoretical methods that were developed to study fluids are now frequently applied to a number of more complex systems generically referred to as soft matter. As for simple liquids, also for complex fluids it is important to understand how their macroscopic behavior is determined by the interactions between the component units. Moreover, in recent years new and relevant insights have emerged from the study of anomalous phases and metastable states of matter. In addition to the traditional topics concerning fluids in normal conditions, the authors of this book discuss recent developments in the field of disordered systems in condensed and soft matter. In particular they emphasize computer simulation techniques that are used in the study of soft matter and the theories and study of slow glassy dynamics. For these reasons the book includes a specific chapter about metastability, supercooled liquids and glass transition. The book is written for graduate students and active researchers in the field.
Preparation, Characterization, Properties and Application of Nanofluid begins with an introduction of colloidal systems and their relation to nanofluid. Special emphasis on the preparation of stable nanofluid and the impact of ultrasonication power on nanofluid preparation is also included, as are characterization and stability measurement techniques. Other topics of note in the book include the thermophysical properties of nanofluids as thermal conductivity, viscosity, and density and specific heat, including the figure of merit of properties. In addition, different parameters, like particle type, size, concentration, liquid type and temperature are discussed based on experimental results, along with a variety of other important topics. The available model and correlations used for nanofluid property calculation are also included.
This book is unique in occupying a gap between standard
undergraduate texts and more advanced texts on quantum field
theory. It covers a range of renormalization methods with a clear
physical interpretation (and motivation), including meanfield
theories and high-temperature and low-density
This second volume of "Progress in Photon Science - Recent Advances" presents the latest achievements made by world-leading researchers in Russia and Japan. Thanks to recent advances in light source technologies; detection techniques for photons, electrons, and charged particles; and imaging technologies, the frontiers of photon science are now being expanding rapidly. Readers will be introduced to the latest research efforts in this rapidly growing research field through topics covering bioimaging and biological photochemistry, atomic and molecular phenomena in laser fields, laser-plasma interaction, advanced spectroscopy, electron scattering in laser fields, photochemistry on novel materials, solid-state spectroscopy, photoexcitation dynamics of nanostructures and clusters, and light propagation.
Mathematical Physics in Theoretical Chemistry deals with important topics in theoretical and computational chemistry. Topics covered include density functional theory, computational methods in biological chemistry, and Hartree-Fock methods. As the second volume in the Developments in Physical & Theoretical Chemistry series, this volume further highlights the major advances and developments in research, also serving as a basis for advanced study. With a multidisciplinary and encompassing structure guided by a highly experienced editor, the series is designed to enable researchers in both academia and industry stay abreast of developments in physical and theoretical chemistry.
This book summarizes the latest findings by leading researchers in the field of photon science in Russia and Japan. It discusses recent advances in the field of photon science and chemistry, covering a wide range of topics, including photochemistry and spectroscopy of novel materials, magnetic properties of solids, photobiology and imaging, and spectroscopy of solids and nanostructures. Based on lectures by respected scientists at the forefront of photon and molecular sciences, the book helps keep readers abreast of the current developments in the field.
Anisotropic Particle Assemblies: Synthesis, Assembly, Modeling, and Applications covers the synthesis, assembly, modeling, and applications of various types of anisotropic particles. Topics such as chemical synthesis and scalable fabrication of colloidal molecules, molecular mimetic self-assembly, directed assembly under external fields, theoretical and numerical multi-scale modeling, anisotropic materials with novel interfacial properties, and the applications of these topics in renewable energy, intelligent micro-machines, and biomedical fields are discussed in depth. Contributors to this book are internationally known experts who have been actively studying each of these subfields for many years. This book is an invaluable reference for researchers and chemical engineers who are working at the intersection of physics, chemistry, chemical engineering, and materials science and engineering. It educates students, trains the next generation of researchers, and stimulates continuous development in this rapidly emerging area for new materials and innovative technologies.
Aluminum, bound almost exclusively to oxygen in various combinations, is the most abundant metal in the earth's crust and, therefore, of great commercial potential. Once methods were developed (in the 1880's) to free useable quantities of the element from oxygen, applications for the element began developing rapidly. This growth has resulted in the ubiquity of the metal in today's world. Therefore it can be found intentionally introduced in many products in direct contact with human beings. It is commonly known that soluble forms of aluminum aretoxic to living organisms. However, aluminum is not known to be bioavailable under everyday conditions. In fact, the solubility product of common aluminum compounds, such as AI(OH)3 is so low as to make it essentially unavailable. This volume of Structure and Bonding seeks to provide in one source, a resource where the basic science related to aluminum toxicity may be obtained. It should be stressed that this volume is not intended to be a warning to avoid contact with aluminum. Living organisms have adequate defenses to prevent aluminum toxicity under normal conditions. Rather the volume was created to simply provide an understanding of the biological effects of aluminum. As such, the present volume should be considered in the context of the companion volumes in this three part series of Structure and Bonding. The first volume was devoted to fundamental developments in group 13 chemistry.
Biopolymer Electrolytes: Fundamentals and Applications in Energy Storage provides the core fundamentals and applications for polyelectrolytes and their properties with a focus on biopolymer electrolytes. Increasing global energy and environmental challenges demand clean and sustainable energy sources to support the modern society. One of the feasible technologies is to use green energy and green materials in devices. Biopolymer electrolytes are one such green material and, hence, have enormous application potential in devices such as electrochemical cells and fuel cells. |
You may like...
Long-Term Preservation of Digital…
Uwe M. Borghoff, Peter Roedig, …
Hardcover
R1,559
Discovery Miles 15 590
Recent Trends in Computational…
Miriam Mehl, Manfred Bischoff, …
Hardcover
Qualitative Organizational Research v. 2…
Kimberly D. Elsbach, Beth A. Bechky
Hardcover
R2,808
Discovery Miles 28 080
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
Cybersecurity Issues and Challenges for…
Saqib Saeed, Abdullah M. Almuhaideb, …
Hardcover
R7,752
Discovery Miles 77 520
Parallel Computational Fluid Dynamics…
C.B. Jenssen, T. Kvamdal, …
Hardcover
R4,528
Discovery Miles 45 280
|