Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
For more than three decades the Electroanalytical Chemistry series has delivered the most in-depth and critical research related to issues in electrochemistry. Volume 22 continues this gold-standard with practical reviews of recent applications, as well as innovative contributions from internationally respected specialists-highlighting the emergence of new technologies and trends in the field. Previous volumes in the series were "highly recommended" by the Journal of the American Chemical Society and considered "essential" by the Journal of Solid State Electrochemistry, and this volume continues with a collection of state-of-the-art advances and studies of the highest caliber.
The development of nanostructured materials represents a new and fast evolving application of recent research in physics and chemistry. Novel experimental tools coupled with new theory have made this possible. Topics covered in this book include nanocrystals, semiconductor heterostructures, nanotubes, nanowires, and manipulation and fabrication techniques. The core of the book consists of ten lectures by five distinguished researchers, Paul Alivisatos, D.D. Awschalom, Sumio Iijima, Charles Lieber and Phaedon Avouris, presented at an Advanced Study Institute in Hong Kong in January 1999. It should interest materials physicists and chemists as well as materials scientists with an interest in the growth and characterisation of sophisticated materials.
The Ion Exchange and Solvent Extraction series treats ion exchange and solvent extraction both as discrete topics and as a unified, multidisciplinary study - presenting new insights for researchers in many chemical and related fields.;Volume 12 contains coverage of: the nature of metal-ion interaction with oppositely charged sites of ion exchangers; high-pressure ion exchange separation of rare earth elements; the commercial recovery of valuable minerals from seawater and brines by ion exchange and sorption; the kinetics of ion exchange in heterogenous systems; the ion-exchange equilibria of amino acids; and more.;The work is intended for analytical, co-ordination, process, separation, surface, organic, inorganic, physical and environmental chemists, geochemists, electrochemists, radiochemists, biochemists, biophysicists, hydrometallurgists, membrane researchers and chemical engineers.
The Ion Exchange and Solvent Extraction series treats ion exchange and solvent extraction both as discrete topics and as a unified, multidisciplinary study - presenting new insights for researchers in many chemical and related field. Containing current knowledge and results in ion exchange, this text: presents an overview of the chemical thermodynamics of cation-exchange reactions, with particular emphasis placed on liquid-phase- and solid-phase-activity coefficient models; describes the development of surface complexation theory and its application to the ion exchange phenomenon; discusses metal-natural colloid surface reactions and their consideration by surface complexation modelling complements; and covers the influence of humic substances on the uptake of metal ions by naturally occurring materials.
The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the proposed theories-developed within the framework of the electron density functional theory and dielectric formalism-to experimental data. The book begins with a discussion of the thermodynamics of surface phenomena and covers experimental and theoretical methods for studying surface characteristics of solids. Chapters describe calculations of surface and adhesion characteristics of metals using the density functional method. They also examine the calculation of adhesion characteristics of metals, semiconductors, and complex compounds based on dielectric formalism. In addition, the text covers dry friction, adsorption of metal atoms, and ferromagnetic films. The principles and methods presented in this book are useful in selecting optimum materials and coatings for various applications, including minimizing friction for increased efficiency of microelectronic components.
Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity. The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research. Case Studies Physical models of hindered molecular motion General solution of the stochastic problem for the hindered molecular motion in crystals Formulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motion Experimental probation of the theoretical outcomes Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion Structural distortion in the ordered phase of crystalline ammonium chloride Organic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme
Touted as the new darling of the chemical industry, alkyl polyglycosides are gaining in popularity due to the fact that they are readily biodegradable, low-toxic, and made from renewable resources. Sugar-Based Surfactants compiles the most recent and relevant aspects of sugar-based surfactants, including self-association, phase behavior, and interfacial properties. Focusing on both colloidal and interfacial science, the book deals with the adsorption of surfactants in both the air-liquid and solid-liquid interfaces. It also covers new advances in surfactant science, such as the development of a family of potent surface active agents that are non-toxic, and thus usable in ubiquitous consumer products
Kinetics, Transport, and Structure in Hard and Soft Materials is the only single reference that discusses the connection between structure and mechanisms of atomic or molecular transport in different classes of materials, from metals and semiconductors to network glasses, polymers and supercooled liquids. Divided into four parts, Part I begins with a discussion the fundamentals of transport, wherein transport properties of a system of non-interacting particles are calculated and the phenomenon of Brownian motion introduced. The phenomenology of diffusion is also discussed wherein Fick's laws are introduced and solved for a range of practical cases involving mass transport. Elementary Statistical mechanics, involving Partition functions, probability distribution functions and correlation functions, is discussed to lay the foundation for the subsequent discussion of mechanisms of transport in different materials. Parts II and III focus on mechanisms of transport in crystalline materials and in structurally disordered materials. Chapters explain how the mechanism of diffusional transport of an atom or molecule is intimately connected to the spatial organization of neighboring structural elements and to its interactions with them. The book reviews factors that control temperature dependent long-range dynamics of glass-forming systems. Diffusion and viscoelasticity of polymer melts, transport (viscous flow and ionic diffusion) in inorganic network glasses, and dynamic heterogeneity in super cooled liquids are described. Part IV analyzes the development of instabilities, such as spinodal decomposition and Mullins-Sekerka instabilities, which lead to the morphological evolution of materials. Kinetics, Transport, and Structure in Hard and Soft Materials emphasizes interdisciplinary nature of transport in materials, presenting its material in a user-friendly format for students from any discipline with a foundation in elementary
Interfacial phenomena driven by heat or mass transfer are widespread in science and various branches of engineering. Research in this area has become quite active in recent years, attributable in part, at least, to the entry of physicists and their sophisticated experimental techniques into the field. Until now, however, the field has lacked a readable account of the recent developments. Interfacial Phenomena and Convection remedies this problem by furnishing a self-contained monograph that examines a rich variety of phenomena in which interfaces pay a crucial role. From a unified perspective that embraces physical chemistry, fluid mechanics, and applied mathematics, the authors study recent developments related to the Marangoni effect, including patterned convection and instabilities, oscillatory/wavy phenomena, and turbulent phenomena. They examine Benard layers subjected to transverse and longitudinal thermal gradients and phenomena involving surface tension gradients as the driving forces, including falling films, drops, and liquid bridges. It is only in the past two or three decades that researchers have performed suitable, clear-cut experiments involving interfacial phenomena, and the stage is now set for a virtual explosion of the field. Interfacial Phenomena and Convection will bring you quickly up to date on the advances realized and prepare you to both use the results and to make further advances.
Kinetics and Thermodynamics of Fast Particles in Solids examines the kinetics and non-equilibrium statistical thermodynamics of fast charged particles moving in crystals in different modes. It follows a line of research very different from traditional ways of constructing a theory of radiation effects, which gives a purely mechanistic interpretation of particle motion. In contrast, this book takes into account the thermodynamic forces due to separation of the thermodynamic parameters of the subsystem of particles ("hot" atoms) on the parameters of the thermostat (electrons and lattice), in addition to covering the various mechanisms of collisions. Topics Include: Construction of a local kinetic equation of Boltzmann type for fast particles interacting with the conduction electrons and lattice vibrations, on the basis of the principles of Bogolyubov's kinetic theory Calculation of the equilibrium energy and angular distributions of fast particles at a depth of the order of coherence length, and the evolution of particle distribution with increasing depth of penetration of the beam Calculation of transverse quasi-temperature of channeled particles with the heating of the beam in the process of diffusion of particles in the space of transverse energies, as well as cooling the beam through a dissipative process Research in the framework of non-equilibrium thermodynamics of the relaxation kinetics of random particles, including the thermodynamics of positronium atoms moving in insulators under laser irradiation Analysis of the kinetics of hot carriers in semiconductors and thermalization of hot carriers, as well as the calculation of the statistical distribution of ejected atoms formed during the displacement cascade The book sets a new direction of the theory of radiation effects in solids-non-equilibrium statistical thermodynamics
An In-Depth View of Hardware Issues, Programming Practices, and Implementation of Key Methods Exploring the challenges of parallel programming from the perspective of quantum chemists, Parallel Computing in Quantum Chemistry thoroughly covers topics relevant to designing and implementing parallel quantum chemistry programs. Focusing on good parallel program design and performance analysis, the first part of the book deals with parallel computer architectures and parallel computing concepts and terminology. The authors discuss trends in hardware, methods, and algorithms; parallel computer architectures and the overall system view of a parallel computer; message-passing; parallelization via multi-threading; measures for predicting and assessing the performance of parallel algorithms; and fundamental issues of designing and implementing parallel programs. The second part contains detailed discussions and performance analyses of parallel algorithms for a number of important and widely used quantum chemistry procedures and methods. The book presents schemes for the parallel computation of two-electron integrals, details the Hartree-Fock procedure, considers the parallel computation of second-order Moller-Plesset energies, and examines the difficulties of parallelizing local correlation methods. Through a solid assessment of parallel computing hardware issues, parallel programming practices, and implementation of key methods, this invaluable book enables readers to develop efficient quantum chemistry software capable of utilizing large-scale parallel computers.
This handbook provides the only complete collection of high-pressure thermodynamic data pertaining to polymer solutions at elevated pressures to date of all critical data for understanding the physical nature of these mixtures and applicable to a number of industrial and laboratory processes in polymer science, physical chemistry, chemical engineering, and biotechnology. In response to the increasing commercial interest due to the physico-chemical properties of these solutions, the CRC Handbook of Thermodynamic Data of Polymer Solutions at Elevated Pressures compiles information on experimental data from hundreds of primary journal articles, dissertations, and other papers into a single source entirely devoted to polymer solutions. The book contains data on vapor-liquid equilibria and gas solubilities, liquidaEURO"liquid equilibria, high-pressure fluid phase equilibria for polymer systems in supercritical fluids, enthalpic and volumetric data, and second virial coefficients, all at elevated pressures. An excellent companion to the author's previous publications, the CRC Handbook of Thermodynamic Data of Copolymer Solutions and the CRC Handbook of Thermodynamic Data of Aqueous Polymer Solutions, this handbook contains reliable, easy-to-use entries, references, tables, examples, and appendices that provide students, professors, and researchers with a well-organized, quick route to the data they need. The CRC Handbook of Thermodynamic Data of Polymer Solutions at Elevated Pressures is a staple resource for all university libraries as well as private laboratories, particularly for researchers, academics, and engineers who handle polymer systems in supercritical fluids, material science applications such as computerized predictive packages, and chemical and biochemical processes, such as synthesis and character
Increase in antibiotic resistance has forced researchers to develop new drugs against microorganisms. Lipopeptides are produced as secondary metabolites by some microorganisms. Computer-aided Design of Antimicrobial Lipopeptides as Prospective Drug Candidates provides the identification of novel ligands for different antimicrobial lipopeptides. Along with identification, it also provides some of the in silico drug design processes, namely homology modelling, molecular docking, QSAR studies, drug ADMET studies and pharmacophore studies to check the ligand-lipopeptide interaction. Some lipopeptides have shown anti-cancerous properties too, and this book discusses the required templates to design new drugs using computational techniques. Key Features: Focuses on the use lipopeptides as new antimicrobial compounds Presents the basics of in silico modelling for design and development of new drug molecules, and is therefore of interest to beginners in the field Provides a step-by-step process for identification of drug molecules and testing its efficacy in silico Couples with courses on patents and intellectual property rights
Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals. The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage dependence influence the uniform alignment of liquid crystals and affect the performance of liquid crystal devices. They also discuss fundamental equations regulating the adsorption phenomenon and the dynamic aspects of ion adsorption phenomenon in liquid crystalline systems. Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals serves as an excellent source of reference for graduates and researchers working in liquid crystals, complex fluids, condensed matter physics, statistical physics, chemical engineering, and electronic engineering, as well as providing a useful general introduction to and background information on the nematic liquid crystal phase.
Quantum electrodynamics (QED) is the branch of relativistic quantum field theory that deals specifically with the interactions between charged particles. It is widely used to solve problems in many areas of physics, such as elementary particles, atomic and molecular systems, and solid state physics. This accessible text, Basics of Quantum Electrodynamics, supplies a solid foundation in this dynamic area of physics, making a direct connection to the concepts of quantum mechanics familiar to the advanced undergraduate student. Chapters cover the general theory of free fields and the quantization of the scalar, electromagnetic, and spinorial fields, which prepares readers for understanding field interactions. The authors describe the general theory of field interactions, introducing the scattering matrix and the Feynman-Dyson graphs. They then discuss divergence-free second-order processes, such as Compton and Moller scattering, followed by divergent second-order processes, which cover vacuum polarization and mass and charge renormalization. Providing a modern, informative textbook, this volume illustrates the intimate connection between quantum mechanics and QED in two basic steps: the quantization of free fields, followed by the theory of their interactions. The text contains solved problems to facilitate the application of the theory, as well as a useful appendix on the theory of distributions. The step-by-step description of the quantization of various fields and the clear presentation of the most important interaction processes in QED make this textbook a useful guide for those studying physics at both the graduate and undergraduate level, as well as a reference for teachers and researchers in the field.
Focuses on copolymers made from sequential block polymerizations of ethylene oxide, propylene oxide and 1, 2-butylene oxide. This text presents the latest applications of polyoxyalkylene block copolymers in areas such as medicine, coal and petroleum, plastics, emulsion polymerization, paper, photography, personal care and cleaner systems. It offers in-depth coverage of the subject from synthesis and analysis to toxicology and environmental impact.
"Describes preparation techniques of protein-based surfactants (PBS) in the laboratory by a variety of chemical and enzymatic means, production by using different types of amino acids, and marketplace applications of PBS in medical and personal care products, detergents, cosmetics, antimicrobial agents, and foods."
An exploration of the surface characteristics of fibres and textiles. It emphasizes how fibre surface affects permeability, stiffness, strength, dyeing, wrinkling, and other performance characteristics to optimize production. It also illustrates methods for developing wrinkle-resistant finishes on fibre surfaces using environmentally friendly techniques.
FROM THE PREFACE The surface modification of polymeric materials has been the object of a large number of investigations, but little attention has been paid to making a polymer surface frictionless or slippery, and lubricating surfaces are practically unmentioned in any books so far published, probably because of the relatively minor importance of polymer friction in industrial applications. A lubricating polymer surface is important, especially in marine and biomedical technologies. For instance, biomaterials to be used for catheterization on the urinary, tracheal, and cardiovascular tracts, or for endoscopy, should have a surface with good handling characteristics when dry and which preferably becomes slippery upon contact with body liquids. Such a low-friction surface must enable easy insertion and removal of the device from a patient. It would further prevent mechanical injury to the mucous membranes and minimize discomfort to the patient. Earlier approaches to providing a low-friction surface were mostly simple applications involving lubricants such as lidocaine jelly, silicone oil, or non-permanent coating with low-friction materials such as polyethylene or fluoroplastics. However, these substances cannot maintain a high degree of slipperiness for the required duration of time, due to the fact that they leach or disperse into the surrounding body fluids. The aim of this book is to describe the principle of lubrication, to outline a variety of methods for attaining a lubricous surface, and to describe the characteristics and properties of such lubricous surfaces. The technology for surface modification of polymers by grafting will find other applications than for lubrication, such as for improvement of the interfacial adhesion in polymer composites.
In a preceding book titled 'Introduction to Marcus Theory of Electron Transfer Reactions' the reader was introduced to the Marcus Theory of Electron Transfer Reactions. There, Marcus' papers from 1956 to 1986 were considered. In the present book, oral interviews with Professor Marcus are reported on his papers published from 1987 to the present. These interviews with Marcus' notes, comments and remarks on his papers and those of his coworkers are an invaluable supplement to his articles for students and scholars in the field of electron transfer reactions.
Green Energy Materials Handbook gives a systematic review of the development of reliable, low-cost, and high-performance green energy materials, covering mainstream computational and experimental studies as well as comprehensive literature on green energy materials, computational methods, experimental fabrication and characterization techniques, and recent progress in the field. This work presents complete experimental measurements and computational results as well as potential applications. Among green technologies, electrochemical and energy storage technologies are considered as the most practicable, environmentally friendly, and workable to make full use of renewable energy sources. This text includes 11 chapters on the field, devoted to 4 important topical areas: computational material design, energy conversion, ion transport, and electrode materials. This handbook is aimed at engineers, researchers, and those who work in the fields of materials science, chemistry, and physics. The systematic studies proposed in this book can greatly promote the basic and applied sciences.
The chapters in this volume have been written by some of the foremost practictioners in the field and should be of interest to both mechanistic and synthetic chemists.
A discussion of the adsorption of inorganics from aqueous solution on inorganic adsorbents. It emphasizes the relationship between adsorption and surface charging, highlighting simple and complex adsorption systems sorted by the adsorbent as well as the adsorbate. The author includes a comprehensive collection of pristine PZC of different materials - covering crystallographic structure, methods of preparation, impurities in the solid, temperature and ionic composition of the solution, experimental methods to determine PZC, and the correlation between zero points and other physical quantities.
First to review nanoscale self-assembly employing such a wide variety of methods Covers a wide variety physical, chemical and biological systems, phenomena, and applications First overviews of nanotube biotechnology and bimetallic nanoparticles
Introduction to Chemical Graph Theory is a concise introduction to the main topics and techniques in chemical graph theory, specifically the theory of topological indices. These include distance-based, degree-based, and counting-based indices. The book covers some of the most commonly used mathematical approaches in the subject. It is also written with the knowledge that chemical graph theory has many connections to different branches of graph theory (such as extremal graph theory, spectral graph theory). The authors wrote the book in an appealing way that attracts people to chemical graph theory. In doing so, the book is an excellent playground and general reference text on the subject, especially for young mathematicians with a special interest in graph theory. Key Features: A concise introduction to topological indices of graph theory Appealing to specialists and non-specialists alike Provides many techniques from current research About the Authors: Stephan Wagner grew up in Graz (Austria), where he also received his PhD from Graz University of Technology in 2006. Shortly afterwards, he moved to South Africa, where he started his career at Stellenbosch University as a lecturer in January 2007. His research interests lie mostly in combinatorics and related areas, including connections to other scientific fields such as physics, chemistry and computer science. Hua Wang received his PhD from University of South Carolina in 2005. He held a Visiting Research Assistant Professor position at University of Florida before joining Georgia Southern University in 2008. His research interests include combinatorics and graph theory, elementary number theory, and related problems |
You may like...
Ionic Liquids - Current State and Future…
Mark B. Shiflett, Aaron M. Scurto
Hardcover
R3,983
Discovery Miles 39 830
The Foundations of Physical Organic…
E. Thomas Strom, Vera V. Mainz
Hardcover
R5,418
Discovery Miles 54 180
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
Metal-Catalyzed Asymmetric…
Montserrat Dieguez, Antonio Pizzano
Hardcover
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R4,787
Discovery Miles 47 870
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,335
Discovery Miles 23 350
Controlling Maillard Pathways To…
Donald Mottram, Andrew Taylor
Hardcover
R5,401
Discovery Miles 54 010
|