![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > General
Surface Structure Modification and Hardening of Al-SI Alloys explores the hardening of material surfaces using concentrated energy flows resulting in the nanostructuring of surface layers. The authors demonstrate how these methods achieve a reduction in plastic deformation of the surface and a more uniform distribution of elastic stresses near the surface during operational use, significantly reducing part failure. It presents results from research and scientific and technological enterprises involved with the modification of light alloy surfaces for use in the automobile and aerospace industries. Additional key features include: Addresses theoretical and experimental research computer simulations of structural phase transformations at the nanolevel to create new materials Details and compares electroexplosion alloying, electron beam processing and electron-plasma alloying of an Al-Si Alloy Explains multiphase plasma jet treatment to obtain high-quality coatings with good and high functional properties This reference is a valuable resource for specialists in the field of physical material science, condensed state physics, metal science and thermal treatment and will be of interest to undergraduate and post-graduate students in these fields.
Solid state composites and hybrid systems offer multifunctional applications in various fields of human life, demonstrating solutions to the key problems of the environment, human health, biology, medicine, electronics, energy harvesting and storage. Exploring this innovative field of research, this book details the wide range of materials, techniques, and approaches utilised in composite and hybrid structures in recent years. It will be of interest not only for experienced researchers but also for postgraduate students and young researchers entering the fields of nanoscience, material sciences, and bioengineering. Features: Contains the latest research developments in the materials, techniques, patents, and approaches in the field Includes both fundamental aspects and applied research Edited by two highly experienced researchers
Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.
Micelles are prevalent in naturally occurring and biological catalytic reactions. However, it is only in recent decades that scientists have developed kinetic models clarifying how micelle-mediated catalysis works at a molecular level. Written by a leading expert in the field, Micellar Catalysis is an in-depth examination of how micelles affect reaction mechanisms and reaction rates in organic and inorganic reactions. The book first discusses the structural and chemical properties of micelles and the role of thermodynamics, concentration, and additives in forming micelles. Demonstrating how intermolecular forces influence the reaction mechanisms, the author presents kinetic models for reactions catalyzed by normal micelles, as well as mixed micelles and metallomicelles. The book also compares various types of catalytic reactions with and without micelles to quantify their effect on reaction rates and rate constants. Using this information, it illustrates how micelles can modify reaction rates and improve catalytic efficiency, particularly for industrial processes. The final chapter explains the principles of kinetics used for data analysis. Focused on kinetic, chemical, and physical aspects of micelle-mediated reactions, this book offers clear insight into the complex mechanisms that occur in biological reactions. Micellar Catalysis is an essential source of reference for scientists involved in the research and development of micelles for industrial and biochemical applications.
A bestseller in its first edition, Liquid Detergents, Second Edition captures the most significant advances since 1996, maintaining its reputation as a first-stop reference in all fundamental theories, practical applications, and manufacturing aspects of liquid detergents. Featuring new material and updates in every chapter, the book expands its coverage of emulsions to include nanoemulsions, adds new data to elucidate the rheology of current commercial detergent raw materials as compared to finished products, and offers a more complete theoretical treatment of the aggregation in non-aqueous solvents. The book now covers all rheology modifiers and thickeners for detergent applications, antibacterial and sensorial light-duty liquid products, color/fabric care and wrinkle reduction in heavy-duty liquid detergents, and household cleaning wipes in specialty liquid household surface cleaners. Rewriting the chapters on the latest improvements and growing benefits in fabric softeners, liquid hand soaps and body washes, and shampoos and conditioners, the latter contains extensive summaries of patents for various new products and technologies. The final chapter, dedicated to the manufacturing of liquid detergents, offers a discussion on continuous vs. batch processes and micro-contamination. The most comprehensive guide of its kind, Liquid Detergents, Second Edition, is a balanced and practical reference that will continue to inspire students, researchers, chemists, and product developers in detergent industry, surfactant science and industrial chemistry.
Perturbation theory is a powerful tool for solving a wide variety of problems in applied mathematics, a tool particularly useful in quantum mechanics and chemistry. Although most books on these subjects include a section offering an overview of perturbation theory, few, if any, take a practical approach that addresses its actual implementation Introduction to Perturbation Theory in Quantum Mechanics does. It collects into a single source most of the techniques for applying the theory to the solution of particular problems. Concentrating on problems that allow exact analytical solutions of the perturbation equations, the book resorts to numerical results only when necessary to illustrate and complement important features of the theory. The author also compares different methods by applying them to the same models so that readers clearly understand why one technique may be preferred over another. Demonstrating the application of similar techniques in quantum and classical mechanics, Introduction to Perturbation Theory in Quantum Mechanics reveals the underlying mathematics in seemingly different problems. It includes many illustrative examples that facilitate the understanding of theoretical concepts, and provides a source of ideas for many original research projects.
This book offers unique coverage of the mechanical properties of nano- and micro-dispersed magnetic fluids. Magnetic fluids are artificially created materials that do not exist in the nature. Researchers developing materials and devices are keenly interested in their "mutually exclusive" properties including fluidity, compressibility, and the ability to magnetize up to saturation in relatively small magnetic fields. Applications of micro- and nanodispersed magnetic fluids include magnetic-seals, magnetically operated grease in friction units and supports, separators of non-magnetic materials, oil skimmers and separators, sensors of acceleration and angle, and gap fillers in loudspeakers.
Processes of Formation of Micro- and Nanodispersed Systems is a comprehensive analysis and presentation of the physical processes and phenomena that lead to the formation of disperse materials. It also details the properties of disperse materials yielded from various processes. Special attention is given to the homogeneous condensation of metal vapours from expanding metal vapours in a vacuum, as well as heterogeneous condensation of metal vapours on solid substrates in the presence of impurities during the formation of disperse condensates. The book also examines flow in thin films, the decay of thin films, and phenomena accompanying the coalescence of disperse particles. Using currently available data, this book compares different methods of producing disperse materials in terms of scale. It also describes several applications of the experimental results it presents, including: Production of composites of nanodisperse metals in an organic matrix Production of metallic powders The potential to produce metallic powders on an industrial scale with the creation of a special plant Fine cleaning of gases contaminated with micro- and nanoparticles, including aerosols such as spray paint Covering and expanding applications of key processes concerning metal vapours, Processes of Formation of Micro- and Nanodispersed Systems is highly valuable to researchers of semiconductors. It provides a single source of detailed and practical information on the processes and phenomena related to the formation of disperse materials. It represents the current state of research and practice in micro- and nanodispersed systems while highlighting paths to advancement in the field.
In spite of the apparent simplicity of silica's composition and structure, scientists are still investigating fundamental questions regarding the formation, constitution, and behavior of colloidal silica systems. Colloidal Silica: Fundamentals and Applications introduces new information on colloid science related to silica chemistry as well as theoretical and experimental aspects of significant areas of colloidal silica science and technology. This resource is dedicated to helping researchers find new uses of silica and answers to practical problems as its industrial use continues to grow steadily in traditional and novel areas. Written by leading silica scientists around the world, this book reflects developments in the field since silica scientist Ralph K. Iler published his authoritative book on silica chemistry in 1979. It discusses properties and methods of characterization, synthesis, and preparation of silica in terms of industrial applications. Following an analysis of the surface chemistry of various silicas, the book explores methods for measuring particle size and useful characterization techniques for determining structure, stability, and reactivity. The authors then focus on various studies, analytical methods, and current applications involving silica gels and powders, silica coatings, colloidal silica, and sol-gel technology. Colloidal Silica: Fundamentals and Applications features up-to-date material relating to fields as diverse as catalysis, metallurgy, electronics, glass, ceramics, paper and pulp technology, optics, elastomers, food, health care, and industrial chromatography. It is ideal for scientists interested in silica chemistry and physics as well as those not familiar with the subject.
Emulsions and Emulsion Stability, Second Edition provides comprehensive coverage of both theoretical and practical aspects of emulsions. The book presents fundamental concepts and processes in emulsified systems, such as flocculation, coalescence, stability, precipitation, deposition, and the evolution of droplet size distribution. The book explains how to predict emulsion stability and determine droplet sizes in a variety of emulsion systems. It discusses spontaneous emulsification and the formation of "nanoemulsions" as well as droplet-droplet interactions in different electrical fields (electrocoalescence), and the formulation, composition, and preparation variables that contribute to the inversion in emulsion systems. Several chapters emphasize applications such as emulsification encountered in oil spills, asphalt, chemical flooding, acid crude oils, and large-scale industrial wastewater treatment. The survey of experimental characterization methods highlights the importance of thin liquid films in colloidal systems and assesses different NMR applications, ultrasound characterization, video microscopy, and other on-line instrumentation. The last chapter in the book deals with obtaining conductivity measurements as an alternative to online instrumentation. Completely revised and expanded, this second edition of Emulsions and Emulsion Stability offers a well-rounded collection of knowledge that is applicable to all academic and industrial scientists and researchers in the fields of surfactant and emulsion science.
Leading readers through an extensive compilation of surface modification reactions and processes for specific tribological results, this reference compiles detailed studies on various residual stresses, reaction processes and mechanisms, heat treatment methods, plasma-based techniques, and more, for a solid understanding of surface structural changes that occur during various engineering procedures. This unique book explores topics previously ignored in other texts on surface engineering and tribology, offers guidelines for the consideration and design of wear life and frictional performance, and sections on laser impingement and nanometer scale surface modification.
Microporous Media presents new developments from nearly a decade of advancement. Written by a leading researcher in the field, this reference provides examples of the most original scientific and technical research impacting studies in porosity and microporosity, and illustrates methods to forecast the properties of microporous structures for improved electronic, construction, electrical, chemical, and medical applications. The book outlines new results in fractal, self-organization, and polymer theories; pore aging, and percolation; and their various engineering applications, and considers the impact of preparation conditions on the structure and properties of microporous materials.
Written by a leading practitioner and teacher in the field of ceramic science and engineering, this outstanding text provides advanced undergraduate- and graduate-level students with a comprehensive, up-to-date Introduction to Phase Equilibria in Ceramic Systems. Building upon a concise definition of the phase rule, the book logically proceeds from one- and two-component systems through increasingly complex systems, enabling students to utilize the phase rule in real applications. Unique because of its emphasis on phase diagrams, timely because of the rising importance of ceramic applications, practical because of its pedagogical approach, Introduction to Phase Equilibria in Ceramic Systems offers end-of-chapter review problems, extensive reading lists, a solid thermodynamic foundation and clear perspectives on the special properties of ceramics as compared to metals.This authoritative volume fills a broad gap in the literature, helping undergraduate- and graduate-level students of ceramic engineering and materials science to approach this demanding subject in a rational, confident fashion. In addition, Introduction to Phase Equilibria in Ceramic Systems serves as a valuable supplement to undergraduate-level metallurgy programs.
Constitutional Dynamic Chemistry: Bridge from Supramolecular Chemistry to Adaptive Chemistry, by Jean-Marie Lehn Multistate and Phase Change Selection in Constitutional Multivalent Systems, by Mihail Barboiu Dynamic Systemic Resolution, by Morakot Sakulsombat, Yan Zhang and Olof Ramstroem Dynamic Combinatorial Self-Replicating Systems, by Emilie Moulin and Nicolas Giuseppone DCC in the Development of Nucleic Acid Targeted and Nucleic Acid Inspired Structures, by Benjamin L. Miller Dynamic Nanoplatforms in Biosensor and Membrane Constitutional Systems, by Eugene Mahon, Teodor Aastrup und Mihail Barboiu Dynamic Assembly of Block-Copolymers, by D. Quemener, A. Deratani und S. Lecommandoux Dynamic Chemistry of Anion Recognition, by Radu Custelcean Supramolecular Naphthalenediimide Nanotubes, by Nandhini Ponnuswamy, Artur R. Stefankiewicz, Jeremy K. M. Sanders und G. Dan Pantos Synthetic Molecular Machines and Polymer/Monomer Size Switches that Operate Through Dynamic and Non-Dynamic Covalent Changes, by Adrian-Mihail Stadler und Juan Ramirez Reversible Covalent Chemistries Compatible with the Principles of Constitutional Dynamic Chemistry: New Reactions to Create More Diversity, by Kamel Meguellati und Sylvain Ladame.
The second edition of Gesser's classic Applied Chemistry includes updated versions of the original 16 chapters plus two new chapters on semiconductors and nanotechnology. This textbook introduces chemistry students to the applications of their field to engineering design and function across a wide range of subjects, from fuels and polymers to electrochemistry and water treatment. Each chapter concludes with a reading list of relevant books and articles as well as a set of exercises which include problems that extend the topics beyond the text. Other supplements to the text include a laboratory section with step-by-step experiments and a solutions manual for instructors.
Oxide-based materials and structures are becoming increasingly important in a wide range of practical fields including microelectronics, photonics, spintronics, power harvesting, and energy storage in addition to having environmental applications. This book provides readers with a review of the latest research and an overview of cutting-edge patents received in the field. It covers a wide range of materials, techniques, and approaches that will be of interest to both established and early-career scientists in nanoscience and nanotechnology, surface and material science, and bioscience and bioengineering in addition to graduate students in these areas. Features: Contains the latest research and developments in this exciting and emerging field Explores both the fundamentals and applications of the research Covers a wide range of materials, techniques, and approaches
High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques. This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a section on stability of 2D ionized gas flow, and additional practical examples, such as MGD generators, Hall and ion thrusters, and Faraday generators.
Environmental protection and sustainability are major concerns in today's world, and a reduction in CO2 emission and the implementation of clean energy are inevitable challenges for scientists and engineers today. The development of electrochemical devices, such as fuel cells, Li-ion batteries, and artificial photosynthesis, is vital for solving environmental problems. A practical device requires designing of materials and operational systems; however, a multidisciplinary subject covering microscopic physics and chemistry as well as macroscopic device properties is absent. In this situation, multiscale simulations play an important role. This book compiles and details cutting-edge research and development of atomistic, nanoscale, microscale, and macroscale computational modeling for various electrochemical devices, including hydrogen storage, Li-ion batteries, fuel cells, and artificial photocatalysis. The authors have been involved in the development of energy materials and devices for many years. In each chapter, after reviewing the calculation methods commonly used in the field, the authors focus on a specific computational approach that is applied to a realistic problem crucial for device improvement. They introduce the simulation technique not only as an analysis tool to explain experimental results but also as a design tool in the scale of interest. At the end of each chapter, a future perspective is added as a guide for the extension of research. Therefore, this book is suitable as a textbook or a reference on multiscale simulations and will appeal to anyone interested in learning practical simulations and applying them to problems in the development of frontier and futuristic electrochemical devices.
This book provides a framework for analysing complex systems for which classical thermodynamics is often not applicable. Since the success of the activated process in 1970, diamond growth with simultaneous graphite etching under low pressure has often been regarded as a violation of the second law of thermodynamics. A series of nonequilibrium phase diagrams, which agree excellently with the activated diamond experiments, have been calculated by the author and his coworkers on the basis of reaction coupling. The book goes on to demonstrate how these lead to a complete new systematization of modern thermodynamics.
Chemists increasingly apply electrochemical methods to the investigation of their systems, in particular towards a better understanding of molecular properties, the exploration of chemical reactions involving electron-transfer (ET), the initiation of further reactions by ET, the kinetic measurements, and the establishment of the reaction mechanisms, as well as the synthesis (electrosynthesis) of desired products. Trends in Molecular Electrochemistry presents recent research on procedures in molecular electroactivation and electrocatalysis, bioelectrochemistry, spectroelectrochemistry, and unconventional electrochemistry. The book highlights the state-of-the-art in the application of electrochemistry by taking an interdisciplinary approach to the study of both static and dynamic molecular properties of coordination compounds as well as inorganic, bioinorganic, and organometallic complexes, supramolecular systems, and metalloenzymes. The principles and approaches are often also valid for organic systems, which are illustrated in various contexts.
Supramolecular aggregation-driven by weak non-covalent interactions, such as van der Waals, - interactions, hydrogen bonding, and electrostatic-has been utilized to build sensing platforms with improved selectivity and sensitivity. Supramolecular aggregates, owing to cooperative interactions, higher sensitivity and selectivity, relatively weak and dynamic non-covalent interactions, and environmental adaptation, have achieved better sensing performance than that of molecular sensory systems that rely on sensors with delicate structures. Aggregation of Luminophores in Supramolecular System: From Mechanisms to Applications describes recent advances in supramolecular chemistry, in which the luminophores are almost non-luminescent in the molecular state, but become highly emissive in the aggregate state. These advances bring new opportunities and challenges for the development of supramolecular chemistry. The intermolecular non-covalent interactions have been considered to be the main driving forces for fabricating supramolecular systems with aggregating luminophores and have an important influence on the luminescence properties of the probes. Based on these unique properties, luminescent supramolecular aggregates have greatly promoted the development of novel materials for applications as sensors, bio-imaging agents, organic electronic devices, and in the field of drug delivery. Features: Discussion of fundamental and interdisciplinary aspects of the aggregation in supramolecular systems. Narration of intermolecular interactions and the photophysical phenomenon of aggregation in supramolecular systems. Comparative discussion on recent developments in aggregation-induced quenching (AIQ) and aggregation-induced emission (AIE), and drawbacks of AIQ. Description of the technological applications of aggregation as biological sensors, chemical sensors, organic electronic materials, and in the field of drug delivery. A convenient format for checking formulas and definitions. This book surveys highlights of the progress made in the field of the aggregation of luminophores in supramolecular chemistry. It is hoped that the work will form a foundation (and indeed a motivation) for new workers in the area, as well as also being useful to experienced supramolecular chemists. It may also aid workers in the biological area to see Nature's aggregation in a new light. Further, the approach employed has been designed to provide readable background material for use with graduates, senior undergraduates, research professionals, and industries.
In the adsorption phenomenon the substances from the external environment the gas or liquid are absorbed by a solid surface (adsorbent). Adsorption is used to separate gaseous and liquid mixtures, for drying and purification of gases and liquids. This reference broadly explores the calculation of the equilibrium and dynamic characteristics of adsorption in porous bodies at the molecular level. Two new theories of statistical physics are presented, both developed by the author for the consistent description of the equilibrium distribution of molecules and dynamics of flows in complex porous materials to be able to solve a wide range of practical tasks in the development of new technologies.
This book is the first comprehensive work to be published on far-ultraviolet (FUV) and deep-ultraviolet (DUV) spectroscopy, subjects of keen interest because new areas of spectroscopy have been born in the FUV and DUV regions. For example, FUV spectroscopy in condensed matter has become possible due to the development of attenuated total reflection/FUV spectroscopy. As other examples, DUV surface-enhanced Raman scattering and DUV tip-enhanced Raman scattering have received great attention. Imaging by DUV spectroscopy has also become an area of interest. More recently, FUV and DUV spectroscopy have shown potential for applications in several fields including industry. All these topics are described in this book. Doctoral students and researchers in universities and national research institutes as well as researchers in various industries will find this volume highly useful.
Thoroughly revised and reorganized, the second edition of Interfacial Forcesin Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial properties and structure of liquid water New material throughout the text on the interplay between macroscopic-scale repulsions and microscopic-scale attractions in protein adsorption A new chapter covering interfacial tension determination A new chapter examining the kinetics and energetics of protein adsorption onto metal oxide surfaces Dr. van Oss describes the nature of the various manifestations of hydrophobic interactions as well as of hydration pressure and analyzes the measurement of the contact angles that result when liquid droplets are deposited on flat solids. He also covers coacervation and complex coacervation, discusses the determination methods of electrokinetic potentials, and treats some of the lesser-known properties of water, such as cluster formation and the hydrophobicity of the water-air interface. Principally involved in multiple applications of colloids and interface science for more than 50 years, Carel Jan van Oss is Editor Emeritus of Immunological Investigations and Founding Editor of Preparative Biochemistry and Biotechnology and of Separation and Purification Reviews. He is an editorial advisor for the Journal of Dispersion Science and Technology. In addition to these Taylor & Francis journals, Dr. van Oss is the author, coauthor, or editor of eleven books, including Colloid & Surface Properties of Clays and Related Minerals (2002), and over 350 scientific papers and chapters. |
You may like...
Artificial Intelligence for Sustainable…
Margherita Pagani, Renaud Champion
Hardcover
R3,234
Discovery Miles 32 340
Handbook of Research on Cyber Security…
Jena Om Prakash, H L Gururaj, …
Hardcover
R5,931
Discovery Miles 59 310
Anomaly Detection and Complex Event…
Patrick Schneider, Fatos Xhafa
Paperback
R2,652
Discovery Miles 26 520
|