![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > General
How do you know what works and what doesn't? This book contains case studies highlighting the power of polytope projects for complex problem solving. Any sort of combinational problem characterized by a large variety of possibly complex constructions and deconstructions based on simple building blocks can be studied in a similar way. Although the majority of case studies are related to chemistry, the method is general and equally applicable to other fields for engineering or science.
The first chapter describes the manifold ways in which the latent functionality embedded in the humble heterocycle furan can be revealed by various oxidative processes.The second chapter details the fascinating cycloaddition and electrocyclization chemistry of unsaturated ketenes. The third chapter chronicles the development of a remarkable organometallic reaction of unactivated alkenes and alkynes, namely carbozincation.
This book presents the solutions to the problems in Convective Heat Transfer. It also contains computer programs to solve homework problems on the CD accompanying the book. Included on the CD are computer programs based on differential and integral methods. Those on differential methods are for two-dimensional flows and allow the user to solve compressible external laminar and turbulent boundary layers, forced and free convection problems between two vertical parallel plates, wall jet problems, turbulent free jet problems, mixing layer between two uniform streams at different temperatures and internal laminar and turbulent flow problems with fully developed velocity profiles. Those programs based on integral methods are for two-dimensional flows and include Thwaites' method for momentum transfer, Smith-Spalding's method for heat transfer, Michel's method for predicting transition, Head's method for momentum transfer and Ambrok's method for heat transfer.
Properties and applications of high surface area materials depend on interfacial phenomena, including diffusion, sorption, dissolution, solvation, surface reactions, catalysis, and phase transitions. Among the physicochemical methods that give useful information regarding these complex phenomena, nuclear magnetic resonance (NMR) spectroscopy is the most universal, yielding detailed structural data regarding molecules, solids, and interfaces. Nuclear Magnetic Resonance Studies of Interfacial Phenomena summarizes NMR research results collected over the past three decades for a wide range of materials-from nanomaterials and nanocomposites to biomaterials, cells, tissues, and seeds. This book describes the applications of important new NMR spectroscopic methods to a variety of useful materials and compares them with results from other techniques such as adsorption, differential scanning calorimetry, thermally stimulated depolarization current, dielectric relaxation spectroscopy, infrared spectroscopy, optical microscopy, and small-angle and wide-angle x-ray scattering. The text explores the application of NMR spectroscopy to examine interfacial phenomena in objects of increasing complexity, beginning with unmodified and modified silica materials. It then describes properties of various mixed oxides with comparisons to individual oxides and also describes carbon materials such as graphite and carbon nanotubes. Chapters deal with carbon-mineral hybrids and their mosaic surface structures, and interfacial phenomena at the surface of natural and synthetics polymers. They also explore a variety of biosystems, which are much more complex, including biomacromolecules (proteins, DNA, and lipids), cells and tissues, and seeds and herbs. The authors cover trends in interfacial phenomena investigations, and the final chapter describes NMR and other methods used in the book. This text presents a comprehensive description of a large array of hard and soft materials, allowing the analysis of the structure-property relationships and generalities on the interfacial behavior of materials and adsorbates.
Concepts and Methods in Modern Theoretical Chemistry: Electronic Structure and Reactivity, the first book in a two-volume set, focuses on the structure and reactivity of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initio quantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict electronic structure and chemical reactivity. This book covers a wide range of subjects, including discussions on the following topics: DFT, particularly the functional and conceptual aspects Excited states, molecular electrostatic potentials, and intermolecular interactions General theoretical aspects and application to molecules Clusters and solids, electronic stress, and electron affinity difference The information theory and the virial theorem New periodic tables The role of the ionization potential Although most of the chapters are written at a level that is accessible to a senior graduate student, experienced researchers will also find interesting new insights in these experts' perspectives. This comprehensive book provides an invaluable resource toward understanding the whole gamut of atoms, molecules, and clusters.
This book, Perturbation Theories for the Thermodynamic Properties of Fluids and Solids, provides a comprehensive review of current perturbation theories-as well as integral equation theories and density functional theories-for the equilibrium thermodynamic and structural properties of classical systems. Emphasizing practical applications, the text avoids complex theoretical derivations as much as possible. It begins with discussions of the nature of intermolecular forces and simple potential models. The book also presents a summary of statistical mechanics concepts and formulae. In addition, it reviews simulation techniques, providing background for the performance analyses of theories executed throughout the text using simulation data. Chapters describe integral equation theories, theoretical approaches for hard-sphere fluid or solid systems, and perturbation theories for simple fluids and solids for monocomponent and multicomponent systems. They also cover density functional theories for inhomogeneous systems and perturbative and nonperturbative approaches to describe the structure and thermodynamics of hard-body molecular fluids. The final chapter examines several more challenging systems, such as fluids near the critical point, liquid metals, molten salts, colloids, and aqueous protein solutions. This book offers a thorough account of the available equilibrium theories for the thermodynamic and structural properties of fluids and solids, with special focus on perturbation theories, emphasizing their applications, strengths, and weaknesses. Appropriate for experienced researchers as well as postgraduate students, the text presents a wide-ranging yet detailed view and provides a useful guide to the application of the theories described.
Phosphorus is essential to the production of our food, and it also triggers algal blooms in lakes, rivers, and oceans when it slips through our hands. An understanding of this essential resource and how we have used and misused it over the years is crucial to the sustainability of our well-being on our planet. In this book, world authorities on phosphorus sustainability Jim Elser and Phil Haygarth explain this element's involvement in biology, human health and nutrition, food production, ecosystem function, and environmental sustainability. Phosphorus chronicles the sustainability challenges phosphorus both poses and solves in various contexts. The book begins with its discovery over 350 years ago, moving to its basic chemistry and the essential role it plays in all living things on Earth. Chapters go on to explain the rise in the usage of phosphorus in agriculture and how the increase in the mining of rock phosphate in the mid-20th century was essential for the Green Revolution. However, phosphorus emissions from human wastes and detergents triggered widespread algal blooms in the 1960s and 1970s. While such emissions have been brought under better control with wastewater treatment, diffuse emissions from farming continue to cause water quality degradation. The authors explain how these diffuse phosphorus emissions may worsen with climate change. In ten concise chapters, Elser and Haygarth offer engaging explanations of our historical use and abuse of phosphorus, including the phosphorus sustainability movement and new efforts to sustain food benefits of limited rock reserves following the phosphate rock price shock in 2007-2008. Highlighting new approaches for phosphorus, the two "Systems Innovators" turn toward the emerging set of sustainable phosphorus solutions necessary to achieve a sustainable "phosphoheaven" and avoid "phosphogeddon." The book provides an insider's take on this essential resource and why all of us need to wrestle with the wicked problems this element will cause, illuminate, or eliminate in years to come.
This book introduces the concepts of physical chemistry of polymers in a format targeted for a blended-learning approach. It provides a basis to bridge polymer chemistry, which targets microscopic chain structures, and polymer engineering, which targets macroscopic material properties and functions. Topics covered are single chain statistics, multi-chain interactions, and chain dynamics, both from a viewpoint of structure, properties (mostly mechanical ones), and their interrelation. In all that, the author encourages the reader to think conceptually. Explains complex facts through simplifying models, diagrams, and illustrations Accessible to chemists, chemical engineers, materials scientists, and physicists Tailored content for an interactive blended-learning format
This textbook introduces the elementary basics of hydrochemistry with special focus on reaction equilibria in aquatic systems and their mathematical description. Topics discussed in this textbook include: structure and properties of water, concentration measures and activities, colligative properties, basics of chemical equilibria, gas-water partitioning, acid/base reactions, precipitation/dissolution, calco-carbonic equilibrium, redox reactions, complex formation, and sorption. Examples within the text as well as problems to be solved by the reader support the acquisition of knowledge. Complete and detailed solutions to the problems are given in a separate chapter.
A full understanding of modern chemistry is impossible without quantum theory. Since the advent of quantum mechanics in 1925, a number of chemical phenomena have been explained, such as electron transfer, excitation energy transfer, and other phenomena in photochemistry and photo-physics. Chemical bonds can now be accurately calculated with the help of a personal computer. Addressing students of theoretical and quantum chemistry and their counterparts in physics, Chemical Physics: Electrons and Excitations introduces chemical physics as a gateway to fields such as photo physics, solid-state physics, and electrochemistry. Offering relevant background in theory and applications, it covers the foundations of quantum mechanics and molecular structure, as well as more specialized topics such as transfer reactions and photochemistry.
Biopolymer Membranes and Films: Health, Food, Environment, and Energy Applications presents the latest techniques for the design and preparation of biopolymer-based membranes and films, leading to a range of cutting-edge applications. The first part of the book introduces the fundamentals of biopolymers, two-dimensional systems, and the characterization of biopolymer membranes and films, considering physicochemical, mechanical and barrier properties. Subsequent sections are organized by application area, with each chapter explaining how biopolymer-based membranes or films can be developed for specific innovative uses across the health, food, environmental and energy sectors. This book is a valuable resource for researchers, scientists and advanced students involved in biopolymer science, polymer membranes and films, polymer chemistry and materials science, as well as for those in industry and academia who are looking to develop materials for advanced applications in the health, food science, environment or energy industries.
Scaling Chemical Processes: Practical Guides in Chemical Engineering is one of a series of short texts that each provides a focused introductory view on a single subject. The full library spans the main topics in the chemical process industries for engineering professionals who require a basic grounding in various related topics. They are 'pocket publications' that the professional engineer can easily carry with them or access electronically while working. Each text is highly practical and applied, and presents first principles for engineers who need to get up to speed in a new area fast. The focused facts provided in each guide will help you converse with experts in the field, attempt your own initial troubleshooting, check calculations, and solve rudimentary problems. This book discusses scaling chemical processes from a laboratory through a pilot plant to a commercial plant. It bases scaling on similarity principles and uses dimensional analysis to derive the dimensionless parameters necessary to ensure a successful chemical process development program. This series is fully endorsed and co-branded by the IChemE, and they help to promote the series.
Engel and Reid's Physical Chemistry provides students with a contemporary and accurate overview of physical chemistry while focusing on basic principles that unite the sub-disciplines of the field. The Third Edition continues to emphasize fundamental concepts, while presenting cutting-edge research developments to emphasize the vibrancy of physical chemistry today.
Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability is a cutting-edge guide that focuses on advanced water treatment applications, covering oily wastewater treatment, desalination, removal of dyes and pigments, photodegradation of organic hazardous materials, heavy metal removal, removal and recovery of nutrients, and volatile organic compounds. Other sections examine the area of gas separation, including acidic gas removal, oxygen enrichment, gas and vapor separation, hydrogen separation, and gas sensing. Final sections cover applications for sustainable energy usage, including the use of synthetic polymer membranes in proton exchange membrane fuel cells (PEMFCs), and more. This is a highly valuable guide for researchers, scientists, and advanced students, working with polymer membranes and films, and across polymer science, polymer chemistry, materials science, chemical e
This title includes a number of Open Access chapters. Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This new volume presents a selection of articles on topics in the field.
EPR spectroscopy is a versatile, nondestructive technique widely used in chemistry, biology, and physics. It detects molecules and materials with unpaired electrons making it a very selective technique that produces a wealth of information on such systems. Its high sensitivity makes it suitable in analyzing very small samples, single crystals, or reaction intermediates like radicals. This textbook takes a practical approach that introduces the basic concepts of EPR to suffi cient detail to allow the reader to gain a basic knowledge of EPR and understand how experiments are carried out and how spectra are analyzed and interpreted. Many illustrative examples are included drawn from solid-state physics and bioinorganic chemistry. It is suitable as a short introduction for advanced undergraduate and beginning graduate students taking their fi rst steps into EPR research.
This book summarizes the latest findings by leading researchers in the field of photon science in Russia and Japan. It discusses recent advances in the field of photon science and chemistry, covering a wide range of topics, including photochemistry and spectroscopy of novel materials, magnetic properties of solids, photobiology and imaging, and spectroscopy of solids and nanostructures. Based on lectures by respected scientists at the forefront of photon and molecular sciences, the book helps keep readers abreast of the current developments in the field.
concentrates on teaching techniques using as much theory as needed.application of the techniques to many problems of materials characterization. Mossbauer spectroscopy is a profound analytical method which has nevertheless continued to develop. The authors now present a state-of-the art book which consists of two parts. The first part details the fundamentals of Mossbauer spectroscopy and is based on a book published in 1978 in the Springer series 'Inorganic Chemistry Concepts' by P. Gutlich, R. Link and A.X. Trautwein. The second part covers useful practical aspects of measurements, and the application of the techniques to many problems of materials characterization. The update includes the use of synchroton radiation and many instructive and illustrative examples in fields such as solid state chemistry, biology and physics, materials and the geosciences, as well as industrial applications. Special chapters on magnetic relaxation phenomena (S. Morup) and computation of hyperfine interaction parameters (F. Neese) are also included. The book concentrates on teaching the technique using theory as much as needed and as little as possible. The reader will learn the fundamentals of the technique and how to apply it to many problems of materials characterization. Transition metal chemistry, studied on the basis of the most widely used Mossbauer isotopes, will be in the foreground.
Nuclear chemistry represents a vital fi eld of basic and applied research. This Volume 1 Nuclear- and Radiochemistry: Introduction describes the relevant parameters of stable and unstable atomic nuclei, the various modes of radioactive transformations, the corresponding types of radiation, and fi nally the mechanisms of nuclear reactions. The 2nd edition has updated the chapters throughout with additional material. The reader is also referred to the new edition of Volume 2 Nuclear- and Radiochemistry: Modern Applications.
This book is intended for beginning students, both chemistry majors and other students who require it for their program. The material is presented in a concise and student-friendly way, without the inclusion of topics unnecessary at that level. A complete section is designed to lead students through the naming of organic compounds in a self-taught manner. Reactions are grouped by mechanistic type and stereochemistry is emphasized throughout. An introduction to the spectroscopic methods used for structure determination is included. Problems are included at each stage and new in this edition are complete answers to the problems as well as an introduction to the molecules of nature.
Modern adhesive dentistry has numerous applications in cariology, as well as in aesthetic and pediatric dentistry, prosthodontics, implantology, and orthodontics-in essence, in comprehensive dental care. This unique book addresses various ramifications of adhesion and adhesives in the broad domain of dentistry. The topics covered include testing aspects of dental materials, dentin bonding, restorations, and adhesion promotion. This book reflects the cumulative wisdom of many world-renowned researchers and provides a useful reference to anyone involved in the various aspects of dentistry.
This book offers a didactic and a self-contained treatment of the physics of liquid and flowing matter with a statistical mechanics approach. Experimental and theoretical methods that were developed to study fluids are now frequently applied to a number of more complex systems generically referred to as soft matter. As for simple liquids, also for complex fluids it is important to understand how their macroscopic behavior is determined by the interactions between the component units. Moreover, in recent years new and relevant insights have emerged from the study of anomalous phases and metastable states of matter. In addition to the traditional topics concerning fluids in normal conditions, the authors of this book discuss recent developments in the field of disordered systems in condensed and soft matter. In particular they emphasize computer simulation techniques that are used in the study of soft matter and the theories and study of slow glassy dynamics. For these reasons the book includes a specific chapter about metastability, supercooled liquids and glass transition. The book is written for graduate students and active researchers in the field.
Plasticizers Derived from Postconsumer PET: Research Trends and Potential Applications presents a roadmap to the successful use of postconsumer PET to obtain plasticizers for later use, a proposal which presents both economic and sustainability advantages. Based on the results of the latest research into the development of chemical recycling techniques of PET waste, this book describes techniques where the plasticizer obtained can be utilized for value addition in PVC and other polymers. In addition, the book provides basic introductory information on the role of plasticizers in the modification of polymers, basic quality requirements, and the latest trends in the synthesis and use of plasticizers in industry, also presenting the available methods of PET recycling, with particular emphasis on chemical recycling, analysis of the PET market, the availability of postconsumer PET, and its value as a raw material for other products. Based on the authors' research, the book discusses the use of postconsumer PET in the synthesis of monomeric and oligomeric plasticizers. Synthesis conditions are shown in detail, and the influence of the structure of synthesized softeners on their basic quality parameters are assessed and compared with selected commercially available products. In the final sections, the book covers the economic challenges and benefits of this process and its application to newly developed products.
This is the first book on interfacial rheology. It aims to describe both its history as well as the current, most frequently used experimental techniques for studying dilational and shear rheology of layers at liquid/gas and liquid/liquid interfaces. The book opens with a chapter on the fundamentals of interfacial rheology. All (16) contributions include the theoretical basis for the presented methodologies, and experimental examples are given. |
![]() ![]() You may like...
Jack Sabin, Scientist and Friend, Volume…
Jens Oddershede, Erkki J. Brandas
Hardcover
R5,422
Discovery Miles 54 220
Ionic Liquids as Green Solvents…
Robin D. Rogers, Kenneth R. Seddon
Hardcover
R2,446
Discovery Miles 24 460
Advances in Physical Organic Chemistry…
Ian Williams, Nick Williams
Hardcover
R5,669
Discovery Miles 56 690
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,496
Discovery Miles 54 960
Aggregation-Induced Emission: Materials…
Michiya Fujiki, bin Liu, …
Hardcover
R5,022
Discovery Miles 50 220
New and Future Developments in Microbial…
H. B Singh, Vijai G. Gupta, …
Hardcover
|