![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Biochemistry > General
This book discusses the methods synthesizing various carbon materials, like graphite, carbon blacks, carbon fibers, carbon nanotubes, and graphene. It also details different functionalization and modification processes used to improve the properties of these materials and composites. From a geometrical-structural point of view, it examines different properties of the composites, such as mechanical, electrical, dielectric, thermal, rheological, morphological, spectroscopic, electronic, optical, and toxic, and describes the effects of carbon types and their geometrical structure on the properties and applications of composites.
Epigenetics and Psychiatric Disease, Volume 157, the latest volume in the Progress in Molecular Biology and Translational Science series, includes recent developments on a variety of topics, including the Epigenetic landscapes of the adversity-exposed brain, Chromosomal conformations and epigenomic regulation in schizophrenia, Progress in the epigenetics of depression, the epigenetics of circadian rhythms in imprinted neurodevelopmental disorders, DNA methylation mediating substance abuse, mechanisms and therapeutic opportunities, DNA methylation in animals model of psychosis, Epigenetics of early life stress, Epigenetic drugs for mood disorders, and more.
This volume explores three main aspects of nitric oxide (NO) research: NO treatment and detection, NO modifications, and NO detoxification. The book also covers methods used to study human/animal and plant nitric oxide. The chapters are divided into three parts: part one looks at NO treatments using gaseous nitric oxide and detection using a NO-sensitive electrode, electron spin resonance, and fluorescence-based NO-sensor proteins. Part two talks about various techniques used to detect and identify NO-dependent modifications, such as biotin-switch assay and quantification of s-nitrosated proteins. Part three focuses on the study of s-nitrosothiol homeostasis and denitrosation activities. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and authoritative, Nitric Oxide: Methods and Protocols is a valuable resource for anyone interested in learning more about this evolving field.
This book offers a comprehensive introduction to electron-based bioscience, biotechnology, and biocorrosion. It both explains the importance of electron flow during metabolic processes in microorganisms and provides valuable insights into emerging applications in various fields. In the opening section, readers will find up-to-date information on topics such as electron transfer reactions, extracellular electron transfer mechanisms, direct interspecies electron transfer, and electron uptake by sulfate-reducing bacteria. The focus then shifts to state-of-the-art advances and applications in the field of biotechnology. Here, the coverage encompasses e.g. progress in understanding electrochemical interactions between microorganisms and conductive particles, enzymatic reactions and their application in the bioproduction of useful chemicals, and the importance of redox balance for fatty acid production. In closing, the book addresses various aspects of the complex phenomenon of microbiologically induced corrosion, highlighting novel insights from the fields of electromicrobiology and electrochemistry and their implications.
The inflammasome is a protein complex composed of an intracellular sensor-typically a Nod-like receptor (NLR), the precursor procaspase-1, and the adaptor ASC. Inflammasome activation leads to the maturation of caspase-1 and the processing of its substrates, IL-1 and IL-18. The inflammasome has been implicated numerous diseases, and blockade of inflammasome-derived IL-1 has beneficial effects on several of these diseases. Different books have been edited about the biology of inflammasomes and about methods to study, however, the implication of this complex in the different diseases and pathological conditions show the need of a book about the clinical implications and therapeutic options. This project will show the context where inflammasomes are being studied and the molecular implications in the medical and clinical contexts. Other important topic of the inflammasomes will be the development of pharmacological inhibitors in order to improve new clinical applications. In this sense, we can find new drugs with inhibitory effects or old drugs with an inhibitory potential effect. There is a need for re-establishing the real benefits of the inflammasome inhibitions in pathological situations and the management of the differents diseases where inflammasomes are implicated.
Nitric Oxide and Other Small Signalling Molecules, Volume 72, the latest release in the Advances in Microbial Physiology series, continues the long tradition of topical, important, cutting-edge reviews in microbiology. The book contains updates in the field, with comprehensive chapters covering the Biochemistry of cysteine persulfides, NO signaling in yeast, The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defense, Nitric Oxide, aN Old molecule with NOble functions in Pseudomonas aeruginosa biology, the Emerging roles of nitric oxide synthase in bacterial physiology, and Anaerobic bacterial response to nitrosative stress.
This book focuses on the state-of-the-art of biosensor research and development for specialists and non-specialists. It introduces the fundamentals of the subject with relevant characteristics of transducer elements, as well as biochemical recognition molecules. This book is ideal for researchers of nanotechnology, materials science and biophysics.
Lipids are an integral part of cell membrane architecture, are intermediaries in cell metabolism, and are involved in transmitting cell signals from hormones, growth factors and nutrients. A number of lipases and phospholipases, lipid kinases, lipid phosphatases, sphingosine kinases, and their reaction products have been implicated in fundamental cellular processes including cell proliferation, division and migration. These enzymes and their products underlie the molecular mechanisms of numerous human diseases, in particular metabolic disease (diabetes), cancer, neurodegenerative disease and cardiovascular disease. Over the last decade, studies have advanced to the point that a number of inhibitors for these enzymes have been developed to attempt to ameliorate these conditions; some of the inhibitors are currently in human clinical trial. The need for this book is to review the current status of this field and the prospect for the inhibitors to be clinically important.
This volume focuses on mitochondrial RNA metabolism, emphasizing recent discoveries and technological advances in this fast moving area that increase our understanding of mitochondrial gene function. Topics addressed include the interplay of mitochondria with the nucleus and cytosol, structure-function connections, and relevance to human disease. Mitochondria are the powerhouses of the cell, and a great deal is known about mitochondrial energy metabolism. Less well known is the plethora of amazing mechanisms that have evolved to control expression of mitochondrial genomes. Several RNA processes and machineries in protozoa, plants, flies and humans are discussed, including: transcription and RNA polymerase mechanism; tRNA processing of 5' and 3' ends; mRNA maturation by nucleotide insertion/deletion editing and by RNA splicing; mRNA stability; and RNA import. Specialized factors and ribonucleoproteins (RNPs) examined include pentatricopeptide repeat (PPR) proteins, RNase P, polymerases, helicases, nucleases, editing and repair enzymes. Remarkable features of these processes and factors are either not found outside mitochondria, differ substantially among eukaryotic lineages, or are unique in biology.
This volume provides readers with a collection of the latest protocols used by researchers to study polyamines (PA). The chapters in this book cover various topics, such as quantification of different polyamines and conjugates, subcellular localization studies, transport, DNA methylation, ODC regulation, genetic and phenotyping analyses, genome-wide association mapping, polyamine applications and cancer. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Polyamines: Methods and Protocols is a useful reference for researchers looking to advance and stimulate their knowledge of polyamines.
Gangliosides in Health and Disease, Volume 156, presents the latest information on Gangliosides, a class of glycolipids that are found on all vertebrate cell surfaces, and are particularly abundant in the brain. Individual chapters in this new volume cover Gangliosides as Toxin Receptors, Gangliosides in Cancer Cell Signaling, Gangliosides in inflammation and neurodegeneration, Gangliosides as functional galectin receptors, Gangliosides in signal transduction, Gangliosides in brain tumor immunology, and Gangliosides in axon regeneration and stability, amongst other related topics. This book brings together world experts in ganglioside structure and function who have been assembled to contribute to this thorough update of the field.
Advances in Clinical Chemistry, Volume 85, the latest installment in this internationally acclaimed series, contains chapters authored by world-renowned clinical laboratory scientists, physicians and research scientists. The serial discusses the latest and most up-to-date technologies related to the field of clinical chemistry, and is the benchmark for novel analytical approaches in the clinical laboratory.
This book systemically describes the mechanisms underlying the neural regulation of metabolism. Metabolic diseases, including obesity and its associated conditions, currently affect more than 500 million people worldwide. Recent research has shown that the neural regulation of metabolism is a central mechanism that controls metabolic status physiologically and pathophysiologically. The book first introduces the latest studies on the neural and cellular mechanisms of hypothalamic neurons, hypothalamic glial cells, neural circuitries, cellular signaling pathways, and synaptic plasticity in the control of appetite, body weight, feeding-related behaviors and metabolic disorders. It then summarizes the humoral mechanisms by which critical adipocyte-derived hormones and lipoprotein lipase regulate lipid and glucose metabolism, and examines the role of the hypothalamus-sympathetic nerve, a critical nerve pathway from CNS to peripheral nervous system (PNS), in the regulation of metabolism in multiple tissues/organs. Furthermore, the book discusses the functions of adipose tissue in energy metabolism. Lastly, it explores dietary interventions to treat neural diseases and some of the emerging technologies used to study the neural regulation of metabolism. Presenting cutting-edge developments in the neural regulation of metabolism, the book is a valuable reference resource for graduate students and researchers in the field of neuroscience and metabolism.
Chemical and Biochemical Approaches for the Study of Anesthetic Function, Part A, Volume 602 assembles new information on our understanding of anesthesia. This latest release in the series includes sections on how physical accuracy leads to biological relevance, best practices for simulating ligand-gated ion channels interacting with general anesthetics, computational approaches for studying voltage-gated ion channels modulation by general anesthetics, anesthetic parameterization, pharmacophore QSAR, QM, ONIOM, and kinetic modeling of electrophysiology data.
This thesis focuses on theoretical analysis of the sophisticated ultrafast optical experiments that probe the crucial first few picoseconds of quantum light harvesting, making an important contribution to quantum biology, an exciting new field at the intersection of condensed matter, physical chemistry and biology. It provides new insights into the role of vibrational dynamics during singlet fission of organic pentacene thin films, and targeting the importance of vibrational dynamics in the design of nanoscale organic light harvesting devices, it also develops a new wavelet analysis technique to probe vibronic dynamics in time-resolved nonlinear optical experiments. Lastly, the thesis explores the theory of how non-linear "breather" vibrations are excited and propagate in the disordered nanostructures of photosynthetic proteins.
Leading researchers are specially invited to provide a complete understanding of a key topic within the multidisciplinary fields of physiology, biochemistry and pharmacology. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.
Introduction: Serpins: From the Way It Was to the Way It Is; J. Travis. Serpins: A Mechanistic Class of Their Own; S.R. Stone, et al. Coagulation: Antithrombin-A Bloody Important Serpin; I. Bjoerk, S.T. Olson. Heparin Cofactor II; D.M. Tollefsen. Neurobiology and Cancer: Regulation of Neurons and Astrocytes by Thrombin and Protease Nexin-l: Relationship to Brain Injury; D.D. Cunningham, F.M. Donovan. Maspin: A Tumor Suppressing Serpin; R. Sager, et al.. Fibrinolysis: The Role of Reactive-Center Loop Mobility in the Serpin Inhibitory Mechanism; D.A. Lawrence. Substrate Specificity of Tissue Type Plasminogen Activator; E.L. Madison. Development and Reproduction: Biology of Progesterone-Induced Uterine Serpins; P.J. Hansen, W.-J. Liu. Serpins from an Insect, Manduca sexta; M.R. Kanost, H. Jiang. Inflammation: Serpins and Programmed Cell Death; G.S. Salvesen. Noninhibitor Serpins: Structure-Function Studies on PEDF: A Noninhibitory Serpin with Neurotropic Activity; S.P. Becerra. Abstracts: Coagulation, Neurobiology and Cancer. Fibrinolysis, Development and Reproduction. Inflammation and Noninhibitor Serpins. 10 Additional Articles. Index.
Ovarian Cycle, Volume 107, the latest in the Vitamins and Hormones series first published in 1943, and the longest-running serial published by Academic Press, covers the latest updates on hormone action, vitamin action, X-ray crystal structure, physiology and enzyme mechanisms. This latest release includes an overview of the ovarian cycle, a section on ovarian hyperstimulation syndrome, information on androgens and ovarian follicular maturation, information on peptide inhibitors of human thymidylate synthase to inhibit ovarian cancer cell growth, sections on nodal and luteolysis, neurokinins, dynorphin and pulsatile Lh secretion, Lh receptor expression by Mir12, and gonadotrophin-surge attenuating factor, melatonin and Bmp-6 regulation, amongst other topics.
This updated second edition covers the molecular biology, genome engineering tools and comprehensive analysis techniques for Corynebacterium glutamicum. Aside from modern omics-based approaches, the authors also focus on cell physiology, including cell division, central carbon metabolic pathways, and the respiratory chain. Readers will learn how primary mechanisms like energy metabolism can be applied in processes like biorefinery. Newly added topics include cell envelope structures and aromatic compound metabolism in C. glutamicum. These chapters will be particularly useful for those interested in the microbial production of commodity chemicals, fuels, and proteins. Corynebacteriacea are already some of the most important industrial microorganisms. Understanding the cell physiology of C. glutamicum will help manufacturers to increase their product range and productivity through efficient metabolic engineering.
Metabolic Aspects of Aging, Volume 155, the latest release in the Progress in Molecular Biology and Translational Science series seeks to provide the most topical, informative and exciting monographs available on a wide variety of research topics related to prions, viruses, bacteria and eukaryotes. The series includes in-depth knowledge on the molecular, biological aspects of organismal physiology and function, with this release including chapters on Longevity, Metabolic Disease and Community Health, the Metabolic Aspects of Aging, Obesity, Metabolism, and Aging: A Multiscalar Approach, The Intersection of Curandismo and Western Medicine and Their Epidemiological Impact for Aging Mexican Americans, and more.
The Microbiology of Central Nervous System Infections, Volume 3, discusses modern approaches to the diagnosis, treatment and prophylaxis of central nervous system (CNS) infections. This new release is divided into five sections that cover treatment strategies, imaging, molecular diagnosis, management of CNS infections with metal nanoparticles, and prophylaxis of CNS infections, including bacterial, viral and fungal infections. The last section contains a chapter on transmissible spongiform encephalopathies and modern trends in its diagnosis and treatment. University teachers, medical practitioners, graduate and postgraduate students, researchers in microbiology, and those in the pharmaceutical and laboratory diagnostic industries will find the book very important.
1 Theoretical Background.- 2 Theoretical Calculations on Small Amino Acids.- 3 Gamma-Aminobutyric Acid (GABA).- 4 The Diaminobutyric (DABA), Delta Aminopentanoic, and Epsilon Aminohexanoic Acids.- 5 Ab Initio Studies of Some Acids and Basic Amino Acids: Aspartic, Glutamic, Arginine, and Deaminoarginine.- 6 Proline.- 7 Taurine and Hypotaurine.- 8 Ab Initio Calculations Related to Glucagon.- 9 The Alpha Factor.- 10 Tight Turns in Proteins.- 11 Some Small Peptides.- 12 Oligopeptides That Are Anticancer Drugs.- Appendix Theoretical Studies of a Glucagon Fragment: Ser8-Asp9-Tyr10.
The establishment of clean, safe water is one of the major challenges facing societies around the globe. The continued urbanization of human populations, the increasing manipulation of natural resources, and the resulting pollution are driving remarkable burden on water resources. Increasing demands for food, energy, and natural resources are expected to continue to accelerate in the near future in response to the demands of these changing human populations. In addition, the complexity of human activities is leading to a diversity of new chemical contaminants in the environment that represent a major concern for water managers. This will create increased pressure on both water quantity and quality, making it increasingly difficult to provide a sustainable supply of water for human welfare and activities. Although protection of water resources is the best long-term solution, we will also need innovative novel approaches and technologies to water treatment to ensure an adequate superior quality resource to meet these needs. Solving tomorrow's water issues will require unique approaches that incorporate emerging new technologies. Great advances have been made in the area of nanotechnology. Due to their unique physical and chemical properties, nanomaterials are extensively used in antibacterial medical products, membrane filters, electronics, catalysts, and biosensors. Nanoparticles can have distinctly different properties from their bulk counterparts, creating the opportunity for new materials with a diversity of applications. Recent developments related to water treatment include the potential use of carbon nanotubes, nanocompositae, nanospheres, nanofibers, and nanowires for the removal of a diversity of chemical pollutants. By exploiting the assets and structure of these new materials, such as increased surface area, high reactivity, and photocatalytic action, it will be possible to create technologies that can be very efficient at removing and degrading environmental pollutants. Understanding and using these unique properties should lead to innovative, cost-effective applications for addressing the complexities of emerging needs for water treatment and protection. Although still in the early stages, research into the application of nanotechnology shows great promise for solving some of these major global water issues. This comprehensive text describes the latest research and application methods in this rapidly advancing field. |
![]() ![]() You may like...
The Brothers Karamazov - A Novel in Four…
Fyodor Dostoevsky
Paperback
|