![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering > General
Studies on integer optimization in emergency management have attracted engineers and scientists from various disciplines such as management, mathematics, computer science, and other fields. Although there are a large number of literature reports on integer planning and emergency events, few books systematically explain the combination of the two. Researchers need a clear and thorough presentation of the theory and application of integer programming methods for emergency management. Integer Optimization and its Computation in Emergency Management investigates the computation theory of integer optimization, developing integer programming methods for emergency management and explores related practical applications. Pursuing a holistic approach, this book establishes a fundamental framework for this topic, intended for graduate students who are interested in operations research and optimization, researchers investigating emergency management, and algorithm design engineers working on integer programming or other optimization applications.
Advances in Imaging and Electron Physics, Volume 226 merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. Chapters in this release cover Characterization of nanomaterials properties using FE-TEM, Cold field-emission electron sources: From higher brightness to ultrafast beams, Every electron counts: Towards the development of aberration optimized and aberration corrected electron sources, and more. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
State Space Systems with Time-Delays Analysis, Identification and Applications covers the modeling, identification and control of industrial applications, including system identification, parameter estimation, dynamic simulation, nonlinear control, and other emerging techniques. The book introduces basic time-delay systems, architectures and control methods. Emphasis is placed on the mathematical analysis of these systems, identifying them, and applying them to practical engineering problems such as three independent water tank systems and distillation systems. This book contains a wide range of time-delay system identification methods that can help readers master the system controllers' design methods.
Structural Mechanics and Design of Metal Pipes: A systematic approach for onshore and offshore pipelines presents a unified and systematic approach to understanding and analyzing the structural behavior of onshore and offshore metallic pipelines. Following an overview of pipeline engineering and pipe fabrication, the mechanics of elastic rings and cylinders is presented as a prelude to structural performance of metal pipes under various loading conditions, which involve pressure and structural loads. The book also discusses special topics, such as geohazards and strain-based design, large-diameter water pipelines, global buckling and mechanically-lined pipes, and outlines approaches for developing state-of-the-art finite element models. In all topics addressed in this book, the mechanical behavior of pipes is related with specific design methods for onshore and offshore pipelines.
Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties provides readers with a firm understanding of the failure and fatigue processes of additively manufactured metals. With a focus on computational methods, the book analyzes the process-microstructure-property relationship of these metals and how it affects their quality while also providing numerical, analytical, and experimental data for material design and investigation optimization. It outlines basic additive manufacturing processes for metals, strategies for modeling the microstructural features of metals and how these features differ based on the manufacturing process, and more. Improvement of additively manufactured metals through predictive simulation methods and microdamage and micro-failure in quasi-static and cyclic loading scenarios are covered, as are topology optimization methods and residual stress analysis techniques. The book concludes with a section featuring case studies looking at additively manufactured metals in automotive, biomedical and aerospace settings.
Coulomb Interactions in Particle Beams, Volume 223 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and computing methods used in all these domains, with this release exploring Coulomb Interactions in Particle Beams.
Solid State Physics, Volume 73, the latest release in this serial that highlights new advances in the field, presents interesting chapters on a variety of current topics in the field, with each chapter written by an international board of authors.
Advances in Heat Transfer, Volume 54 in this comprehensive series, highlights new advances in the field, with this new volume presenting interesting chapter written by an international board of authors. Updates to this new release include chapters on Thermal Convection Studies at the University of Minnesota and Turbulent passive scalar transport in smooth wall-bounded flows: recent advances.
Scalar Damage and Healing Mechanics outlines the latest cutting-edge research in the field of scalar damage and healing mechanics, providing step-by-step insight on how to use scalar damage variables in various modeling scenarios. Additionally, the book discusses the latest advances in healing mechanics, covering the evolution of healing and damage, small damage and small healing, healing processes in series and in parallel, super healing, and the thermodynamics of damage and healing. Coupled systems, in which damage triggers self-healing as well as a decoupled system where healing occurs after damage is identified by external detection, are also discussed. Readers are additionally introduced to fundamental concepts such as effective stress, damage evolution, plane stress damage decomposition, and other damage processes that form the basis for a better understanding of the more advanced chapters.
Tribology of Polymers, Polymer Composites, and Polymer Nanocomposites combines fundamental knowledge with the latest findings in the area of polymer tribology. From testing of property-related mechanisms to prediction of wear using artificial neural networks, the book explores all relevant polymer types, including elastomers, epoxy-based, nylon, and more while also discussing their different types of reinforcement, such as particulates, short fibers, natural fibers, and beyond. New developments in sustainable materials, environmental effects, nanoscaled fillers, and self-lubrication are each discussed, as are applications of these materials, guidelines for when to use certain polymer systems, and functional groups of polymers. Experimental methods and modeling and prediction techniques are also outlined. The tribology of graphene-based, biodegradable, hybrid nanofiller/polymer nanocomposites and other types of polymers is discussed at length.
Fretting Wear and Fretting Fatigue: Fundamental Principles and Applications takes a combined mechanics and materials approach, providing readers with a fundamental understanding of fretting phenomena, related modeling and experimentation techniques, methods for mitigation, and robust examples of practical applications across an array of engineering disciplines. Sections cover the underpinning theories of fretting wear and fretting fatigue, delve into experimentation and modeling methods, and cover a broad array of applications of fretting fatigue and fretting wear, looking at its impacts in medical implants, suspension ropes, bearings, heating exchangers, electrical connectors, and more.
Most modern systems involve various engineering disciplines. Mechatronic systems are designed to be dependable and efficient; however, mechatronics engineering faces multiple challenges at the design and exploitation stages. It is essential for engineers to be aware of these challenges and remain up to date with the emerging research in the mechatronics engineering field. Trends, Paradigms, and Advances in Mechatronics Engineering presents the latest advances and applications of mechatronics. It highlights the recent challenges in the field and facilitates understanding of the subject. Covering topics such as the construction industry, design optimization, and low-cost fabrication, this premier reference source is a crucial resource for engineers, computer scientists, construction managers, students and educators of higher education, librarians, researchers, and academicians.
The Mechanics of Hydrogels: Mechanical Properties, Testing, and Applications offers readers a systematic description of the mechanical properties and characterizations of hydrogels. Practical topics such as manufacturing hydrogels with controlled mechanical properties and the mechanical testing of hydrogels are covered at length, as are areas such as inelastic and nonlinear deformation, rheological characterization, fracture and indentation testing, mechanical properties of cellularly responsive hydrogels, and more. Proper instrumentation and modeling techniques for measuring the mechanical properties of hydrogels are also explored.
Tribology of Additively Manufactured Materials: Fundamentals, Modeling, and Applications starts with a look at the history, methods and mechanics of additive manufacturing (AM), focusing on power bed fusion-based and direct energy deposition-based additive manufacturing. Following sections of the book provide a foundational background in the fundamentals of tribology, covering the basics of surface engineering, friction and wear, corrosion and tribocorrosion, and the tribological considerations of a variety of AM materials, such as friction and wear in non-metallic and metallic AM materials, degradation in non-metallic AM components, and corrosion and tribocorrosion in AM components. The book then concludes with a section covering modeling and simulation scenarios and challenges related to the tribology of AM materials, providing readers with the processing conditions needed to extend and strengthen the lifetime and durability of AM materials and components.
Welding Deformation and Residual Stress Prevention, Second Edition provides readers with both fundamental theoretical knowledge about welding deformation and stress as well as unique computational approaches for predicting and mitigating the effects of deformation and residual stress on materials. This second edition has been updated to include new techniques and applications, outlining advanced finite element methods such as implicit scheme, explicit scheme, and hybrid scheme, and coupling analysis among thermal-metallurgy-mechanics. Non-destructive measurement methods for residual stresses are introduced, such as X-ray diffraction, the indentation technique, the neutron diffraction method, and various synchrotron X-ray diffraction techniques. Destructive measurement techniques are covered as well, such as block cutting for releasing residual stress, blind hole drilling, deep hole drilling, the slit cutting method, sectional contour method, and general inherent strain method. Various industrial applications of the material behavior and computational approaches are featured throughout.
Rolling Bearing Tribology: Tribology and Failure Modes of Rolling Element Bearings discusses these machine elements that are used to accommodate motion on or about shafts in mechanical systems, with ball bearings, cylindrical roller bearings, spherical roller bearings, and tapered roller bearings reviewed. Each bearing type experiences different kinds of motion and forces with their respective raceway, retainers and guiding flanges. The material in this book identifies the tribology of the major bearing types and how that tribology depends upon materials, surfaces and lubrication. In addition, the book describes the best practices to mitigate common failure modes of rolling element bearings.
Advances in Imaging and Electron Physics, Volume 224 highlights new advances in the field, with this new volume presenting interesting chapters on Measuring elastic deformation and orientation gradients by scanning electron microscopy - conventional, new and emerging methods, Development of an alternative global method with high angular resolution, Implementing the new global method, Numerical validation of the method and influence of optical distortions, and Applications of the method.
This third volume of the new ASME Press Book Series on Renewable Energy also edited by Dr. Rao and published by ASME Press is based on updated chapters from the classic 2011 Handbook of Energy and Power Generation in addition to a new chapter appropriate for the title of this book. The discussions in this book update Wind Energy since the publication of 2011 Handbook by Dr. Rao in Chapters 1, 2, 3 and 4. Since the coverage in the 2011 Handbook is considered applicable even for the present it is retained in total with the contributions for original authors for Chapters 1, 2, 3 and 4 an update for Chapter 6, 7, 8 and 9 of the 2011 Handbook. Chapter 1 covers "NASA Developments and Potential"; Chapter 2 addresses "Scope of Wind Energy Generation Technologies since 2011"; and Chapter 3 "Scope of Wind Energy in the US since 2011; and Chapter 4 "Wind Energy in the Netherlands Since 2011". Chapter 5, an update of Chapter 10 of the 2011 Handbook is titled as before in the 2011 Handbook, "Role of Wind Energy Technology in India and Neighboring Countries" by original author M.P. Ramesh and finally the last Chapter 6 is a new Chapter "Artificial Intelligence in Wind Energy" by Dr. Weifei Hu. The book contains over 200 pages with 28 tables, 143 figures, 379 footnotes and over 102 additional references in this updated version. The book has an index as before in the original edition, to help users easily navigate through the text and graphics.
Finite Element Method: Physics and Solution Methods aims to provide the reader a sound understanding of the physical systems and solution methods to enable effective use of the finite element method. This book focuses on one- and two-dimensional elasticity and heat transfer problems with detailed derivations of the governing equations. The connections between the classical variational techniques and the finite element method are carefully explained. Following the chapter addressing the classical variational methods, the finite element method is developed as a natural outcome of these methods where the governing partial differential equation is defined over a subsegment (element) of the solution domain. As well as being a guide to thorough and effective use of the finite element method, this book also functions as a reference on theory of elasticity, heat transfer, and mechanics of beams.
Plasmon Coupling Physics, Wave Effects and their Study by Electron Spectroscopies, Volume 222 in the Advances in Imaging and Electron Physics serial, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Specific chapters in this release cover Phase retrieval methods applied to coherent imaging, X-ray phase-contrast imaging: a broad overview of some fundamentals, Graphene and borophene as nanoscopic materials for electronics - with review of the physics, and more. |
![]() ![]() You may like...
The Pathway to Flow - Unlock the Healing…
Julia F. Christensen
Paperback
Experiments and Modeling in Cognitive…
Fabien Mathy, Mustapha Chekaf
Hardcover
Dynamic Oligopolies with Time Delays
Akio Matsumoto, Ferenc Szidarovszky
Hardcover
R3,144
Discovery Miles 31 440
Effects of Peri-Adolescent Licit and…
Richard L. Bell, Shafiqurrahman
Hardcover
Introduction to Basic Aspects of the…
Otto Appenzeller, Guillaume J. Lamotte, …
Hardcover
R3,701
Discovery Miles 37 010
|