![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Civil engineering, surveying & building > Building construction & materials > General
This book provides a comprehensive description of traditional and innovative forest-based bioproducts, from pulp and paper, wood-based composites and wood fuels to chemicals and fiber-based composites. The descriptions of different types of forest-based bioproducts are supplemented by the environmental impacts involved in their processing, use, and end-of-life phase. Further, the possibility of reusing, recycling and upgrading bioproducts at the end of their projected life cycle is discussed. As the intensity of demand for forest biomass is currently changing, forest-based industries need to respond with innovative products, business models, marketing and management. As such, the book concludes with a chapter on the bioproducts business and these products' role in bioeconomies.
This book describes the development of a system dynamics-based model that can capture the future trajectories of housing energy and carbon emissions. It approaches energy and carbon emissions in the housing sector as a complex socio-technical problem involving the analysis of intrinsic interrelationships among dwellings, occupants and the environment. Based on an examination of the UK housing sector but with relevance worldwide, the book demonstrates how the systems dynamics simulation can be used as a learning laboratory regarding future trends in housing energy and carbon emissions. The authors employ a pragmatic research strategy, involving the collection of both qualitative and quantitative data to develop a model. The book enriches readers' understanding of the complexity involved in housing energy and carbon emissions from a systems-thinking perspective. As such, it will be of interest to researchers in the fields of architectural engineering, housing studies and climate change, while also appealing to industry practitioners and policymakers specializing in housing energy.
Mixed Reality is moving out of the research-labs into our daily lives. It plays an increasing role in architecture, design and construction. The combination of digital content with reality creates an exciting synergy that sets out to enhance engagement within architectural design and construction. State-of-the-art research projects on theories and applications within Mixed Reality are presented by leading researchers covering topics in architecture, design collaboration, construction and education. They discuss current projects and offer insight into the next wave of Mixed Reality possibilities.
One distinct feature of human society since the dawn of civilization is the systematic use of inorganic building materials, such as natural stone, unburnt and burnt soil, adobe and brick, inorganic binders like lime and cement, and reinforced concrete. Our heritage has cultural, architectural and technological value and preserving such structures is a key issue today. Planners and conservation scientists need detailed site surveys and analyses to create a database that will serve to guide subsequent actions. One factor in this knowledge base is an understanding of how historic materials were prepared and the crucial properties that influence their long-term behaviour. Any assessment of the way such materials perform must crucially be based on an understanding of the methods used for their analysis. The editors here add to the knowledge base treating the materials used in historic structures, their properties, technology of use and conservation, and their performance in a changing environment. The book draws together 18 chapters dealing with the inorganic materials used in historic structures, such as adobe, brick, stone, mortars, concrete and plasters. The approach is complex, covering material characterisation as well as several case studies of historic structures from Europe, including Germany, Ireland, Italy, Poland, Portugal, Scotland, Slovenia and Spain, and the My Son Temples in Vietnam. An equally important component of the book covers the analysis of materials, together with a treatment of sustainable development, such as the protection of monuments from earthquakes and climate change. The authors are all leading international experts, drawn from a variety of backgrounds: architecture, civil engineering, conservation science, geology and material science, with close links to professional organisations such as ICOMOS or universities and research centres throughout Europe. Audience: This book will be of interest to geologists, engineers, restorers, consulting engineers, designers and other professionals dealing with cultural heritage and sustainable development. Also graduate students in applied geo-science (mineralogy, geochemistry, petrology), architecture and civil engineering will find interesting information in this book.
Concrete is a global material that underwrites commercial wellbeing and social development. There is no substitute that can be used on the same engineering scale and its sustainability, expolitation and further development are imperatives to creating and maintaing a healthy economy and environment worldwide. The pressure for change and improvement of performance is relentless and necessary. Concrete must keep evolving to satisfy the increasing demands of all its users. These six volumes are the proceedings of the international Challenges of Concrete Construction Congress held in September 2002 with contributions from many of the world's leading authorities in this field.
This book addresses earthquakes, with a special focus on the Ghorka earthquake, which struck parts of central Nepal in April 2015. Drawing on this disastrous event, it closely examines various aspects of earthquakes in contributions prepared by international experts. The topics covered include: the geological and geophysical background of seismicity; a detailed inventory of the damage done by the earthquake; effective damage prevention through earthquake-safe buildings and settlements; restoration options for world-heritage buildings; strategies for providing technical and medical relief and, lastly, questions associated with public life and economy in a high-risk seismic zone. Combining perspectives from various fields, the book presents the state of the art in all earthquake-related fields and outlines future approaches to risk identification, damage prevention, and disaster management in all parts of society, administration, and politics in Nepal. Beyond the specific disaster in Nepal, the findings presented here will have broader implications for how societies can best deal with disasters.
This book highlights aesthetics as pertaining to the structural component in architectural design. This less explored aspect of architecture is discussed and explains the enduring qualities of ten specific buildings from architectural history to present day due to their structural aesthetics. Based on comprehensive research, a critical analysis is presented of the constraints and other influences on architectural and structural design, such as culture, patronage, geometry, available resources and technologies.
This book highlights the concept of environmental water footprint in the energy (bioenergy & hydropower) sector and the building/construction sector, focusing on a case study in Iran. It argues and demonstrates that water conservation is one of the most essential elements every industry has to take into account in its sustainability strategy.
These are the papers presented at the Fib-RILEM workshop held in Madrid, Spain, in November 2010. The assessment of deterioration and aging of concrete structures, most commonlythrough reinforcement corrosion, is not considered incurrent structural codes or standards. Some guidelines manuals exist, and research has been done, but there is as yet no accepted methodology nor models that could be used by engineers. This book deals with all aspects related to modelling of corroding structures and provides state-of-the-art information on structural models for corroding structures."
This book explains how in moving towards Cleaner Production, the Lean Production Philosophy can be applied to reduce carbon emissions in prefabrication - one major source of the Greenhouse Gas (GHG) emissions which contribute to global climate change. This book examines theories and principles in the Lean Production Philosophy to develop situation-based carbon reduction strategies for precast concrete manufacturers and contractors in terms of Site layout, Supply Chain, Production, Stocks and Installation Management. It presents the empirical findings of surveys and case studies with managers and professionals working for precasters and contractors in Singapore, findings which provide good practical guidance for precast concrete manufacturers and contractors to achieve low carbon emissions and to perform better in many sustainability-based rating systems, such as the Singapore Green Labelling Scheme and the Building and Construction Authority (BCA) Green Mark Scheme.
This volume gathers the latest advances, innovations and applications presented by leading international researchers and engineers at the International Conference on Sustainable Production and Use of Cement and Concrete (ICSPCC 2019), held in Villa Clara, Cuba on June 23-30, 2019. It covers highly diverse topics, including sustainable production of low-carbon cements, novelties in the development of supplementary cementitious materials, new techniques for the microstructural characterization of construction materials, Portland-based and alkaline-activated cementitious systems, development of additives and additions in the sustainable production of concrete, sustainable production of high-performance concrete, durable concrete produced with recycled aggregates, development of mortars for historical patrimony restoration, environmental and economic assessment of the production and use of cement. The contributions, which were selected by means of a rigorous, international peer-review process, highlight numerous exciting ideas that will inspire novel research directions and foster multidisciplinary collaboration between different specialists.
Optimal analysis is defined as an analysis that creates and uses
sparse, well-structured and well-conditioned matrices. The focus is
on efficient methods for eigensolution of matrices involved in
static, dynamic and stability analyses of symmetric and regular
structures, or those general structures containing such components.
Powerful tools are also developed for configuration processing,
which is an important issue in the analysis and design of space
structures and finite element models.
This volume covers the interdisciplinary field of disaster mitigatition against earthquakes with special emphasis on prevention of total collapse of existing low rise buildings towards reduction of life losses and economical assets. Rehabilitation of thousands of low-rise buildings in many big cities located in earthquake prone areas, is practically impossible even though there are experimentally and analytically approved intervention techniques to protect these existing buildings. It is simply not possible to find a proper way and proper amount of financial support to do this job. It will be more realistic to change the target to be achieved in a relatively short time, especially if time shortage starts to become the most critical issue. The new target can be specified as the prevention of total collapse of low-rise low-cost existing buildings, at least to save as much lives and property as possible. Simple prescriptive techniques, which can be implemented by the building owners, should be prepared. The cost of the improvement techniques, all kinds of legal, economical and social issues for convincing people, and promotions such as tax exemptions should be discussed in detail. Writers of all chapters are leading researchers and engineers working in the field of structural and earthquake engineering. The book will start with an introduction chapter written by Prof. Helmut Krawinkler of Stanford University. In this chapter, past and present of studies towards seismically safe design and construction will be introduced, as well as potential future trends in structural and earthquake engineering. In other chapters, different subjects will be presented under three main titles, namely; determination of seismic risks, seismic safety assessment of existing buildings, and measures for prevention of total collapse.
This book charts the path toward high performance sustainable buildings and the smart dwellings of the future. The volume clearly explains the principles and practices of high performance design, the uses of building information modelling (BIM), and the materials and methods of smart construction. Power Systems, Architecture, Material Science, Civil Engineering and Information Systems are all given consideration, as interdisciplinary endeavours are at the heart of this green building revolution.
This book provides a general review of the literature on underground structures, combined with new specifications, engineering case studies, and numerical simulations based on the authors' research. It focuses on the basic concepts, theories, and methods of the design of underground structures. After an introduction, it covers various topics, such as elastic foundation beam theory and numerical analysis methods for underground structures, as well as the design of shallow underground structures, diaphragm wall structures, shield tunnel structures, caisson structures, immersed tube structures, and integral tunnel structures. It also includes tables for calculating elastic foundation beam. This book is intended for senior undergraduate and graduate students majoring in urban underground space engineering, building engineering, highway engineering, railway engineering, bridge and tunnel engineering, water conservancy and hydropower engineering.
Energy audits have multiple goals including reducing energy consumption, managing costs and environmental impact. Improving the energy performance of existing buildings through energy retrofit measures is a great opportunity for developing sustainability in our structures and developing a green building economy. Green Energy Audit of Buildings considers this opportunity with a new and modern interpretation of the classic methodologies. This comprehensive guide to green energy audits integrates energy audit and LEED (R) methodologies to focus on energy and environment as strategic elements. In addition to these methodologies, Green Energy Audit of Buildings includes 45 check-list for field surveys and 97 technical sheets of possible energy retrofit actions that can be applied to existing real-world cases. Covering both the technical and economical points of view, Green Energy Audit of Buildings provides a comprehensive understanding and method for analyzing buildings and facilities in order to promote sustainability. Engineers, architects, energy assessors and mangers in charge of building maintenance will all find this a key reference as well as lecturers, students and researchers looking to develop their understanding of sustainable buildings.
This book presents the necessary fundamental knowledge in the research, development, design, selection, and application of desiccant heating, ventilating, and air-conditioning systems. It covers the established installations in different climatic conditions and building types. In addition, advanced performance evaluation techniques are presented, covering thermodynamic, economic, and environmental aspects. Hence, the book is an important resource for undergraduate and graduate students, design and installation engineers, researchers and scientists, building owners and occupants, and energy and environmental policy makers.
This book provides basic information on the design of structures with tropical woods. It is intended primarily for teaching university- and college-level courses in structural design. It is also suitable as a reference material for practitioners. Although parts of the background material relate specifically to West and East Africa, the design principles apply to the whole of tropical Africa, Latin America and South Asia. The book is laced with ample illustrations including photographs of real life wood structures and structural elements across Africa that make for interesting reading. It has numerous manual and Excel spread sheet worked examples and review questions that can properly guide a first-time designer of wooden structural elements. A number of design problems are also solved using the FORTRAN programming language. Topics covered in the thirteen chapters of the book include a brief introduction to the book, the anatomy and physical properties of tropical woods; a bri ef review of the mechanical properties of wood, timber seasoning and preservation, uses of wood and wood products in construction; basic theory of structures, and structural load computations; design of wooden beams, solid and built-up wooden columns, wood connections and wooden trusses; as well as a brief introduction to the design of wooden bridges.
This book brings forward the concept of the geology-environmental capacity of ground buildings. It quantifies the geology-environmental capacity of ground buildings by analyzing the main factors of land subsidence and setting up the evaluation system. The geological environmental capacity of ground buildings is mainly controlled by the land subsidence and the output is the floor area ratio. According to the different geology structures and the different requirements of subsidence control in the soft soil areas in Shanghai, the evaluation system of the floor area ratio is built up by the adaptive neuro-fuzzy inference system (ANFIS) and the floor area ratios of four typical regions (Lujiazui, Xujiahui, Zhongyuan and Changqiao) are obtained by the ANFIS to offer references for urban planning. By taking the typical soft soil areas in Shanghai as case studies, this book will provide valuable insights to professors and graduate students in the field of Geotechnical Engineering, Civil Engineering, Engineering Geology and Environmental Geology.
In the past, facilities considered to be at the end of their
useful life were demolished and replaced with new ones that better
met the functional requirements of modern society, including new
safety standards. Humankind has recently recognised the threats to
the environment and to our limited natural resources due to our
relentless determination to destroy the old and build anew. With
the awareness of these constraints and the emphasis on
sustainability, in future the majority of old structures will be
retrofitted to extend their service life as long as feasible. In
keeping with this new approach, the EU s Construction Products
Regulation 305/2011, which is the basis of the Eurocodes, included
the sustainable use of resources as an "Essential Requirement" for
construction. So, the forthcoming second generation of EN-Eurocodes
will cover not only the design of new structures, but the
rehabilitation of existing ones as well.
This monograph presents a state-of-the-art analysis of eco-friendly and aesthetic structures in wooden dome construction. The author demonstrates that the further development of wooden structures depends on both supplementing the testing of wood as a heterogeneous material, as well as on further improvement of fibrous structures with visco-elastic properties. The target audience primarily comprises research experts and practitioners in the field of building materials who are interested in innovative architecture.
Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe. To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows with free surfaces, and fluid-structure interactions, to practical applications with detailed simulation results. The book will offer essential insights for researchers and engineers working in the field of computational seismic/tsunami engineering.
This book examines pedestrian shoe-floor slip resistance from an engineering standpoint in order to better understand friction and wear behavior. This analysis includes an extensive investigation into the surface properties of shoes and flow, and the measurement of dynamic friction and other mechanical and physical aspects of shoe-floor tribology. Lastly, the book proposes a measurement concept for the identification and classification of operational floor surfaces under a range of different conditions. Novel techniques and methods are proposed that can improve the reliability of slip resistance assessments. The current state of knowledge is critically examined and discussed from a tribological perspective, including aspects like friction, wear, lubrication and the mechanical behavior of shoes, floors and their wider environment. Further, the book reports on extensive experimental investigations into the topographical characteristics of shoe and floor surfaces and how they affect slip resistance. Slips resulting in pedestrian falls are a major cause of injuries and deaths for all age groups. This important book provides essential insights for researchers, practicing engineers and public safety officials wishing to learn about how the risk of pedestrian slips can be assessed and understood. |
You may like...
Handbook of Recycled Concrete and…
Fernando Pacheco Torgal, Yining Ding
Hardcover
R5,082
Discovery Miles 50 820
Modern Earth Buildings - Materials…
M.R. Hall, R. Lindsay, …
Hardcover
R5,709
Discovery Miles 57 090
Corrosion of Reinforced Concrete…
Guofu Qiao, Bingbing Guo, …
Paperback
R3,145
Discovery Miles 31 450
Eco-efficient Masonry Bricks and Blocks…
Fernando Pacheco Torgal, Paulo B. Lourenco, …
Hardcover
R5,557
Discovery Miles 55 570
Advanced Concrete Technology 4 - Testing…
John Newman, B.S. Choo
Hardcover
R2,590
Discovery Miles 25 900
|