Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Transport technology > Aerospace & aviation technology > General
This book presents selected papers presented in the Symposium on Applied Aerodynamics and Design of Aerospace Vehicles (SAROD 2018), which was jointly organized by Aeronautical Development Agency (the nodal agency for the design and development of combat aircraft in India), Gas-Turbine Research Establishment (responsible for design and development of gas turbine engines for military applications), and CSIR-National Aerospace Laboratories (involved in major aerospace programs in the country such as SARAS program, LCA, Space Launch Vehicles, Missiles and UAVs). It brings together experiences of aerodynamicists in India as well as abroad in Aerospace Vehicle Design, Gas Turbine Engines, Missiles and related areas. It is a useful volume for researchers, professionals and students interested in diversified areas of aerospace engineering.
Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments provides an overview of how unmanned aerial systems have revolutionized our capability to monitor river systems, soil characteristics, and related processes at unparalleled spatio-temporal resolutions. This capability has enabled enhancements in our capacity to describe water cycle and hydrological processes. The book includes guidelines, technical advice, and practical experience to support practitioners and scientists in increasing the efficiency of monitoring with the help of UAS. The book contains field survey datasets to use as practical exercises, allowing proposed techniques and methods to be applied to real world case studies.
Small satellite technology is opening up a new era in space exploration offering reduced cost of launch and maintenance, operational flexibility with on-orbit reconfiguration, redundancy etc. The true power of such missions can be harnessed only from close and precise formation flying of satellites. Formation flying missions support diverse application areas such as reconnaissance, remote sensing, solar observatory, deep space observatories, etc. A key component involved in formation flying is the guidance algorithm that should account for system nonlinearities and unknown disturbances. The main focus of this book is to present various nonlinear optimal control and adaptive guidance ideas to ensure precise close formation flying in presence of such difficulties. In addition to in-depth discussion of the relevant topics, MATLAB program files for the results included are also provided for the benefit of the readers. Since this book has concise information about the various guidance techniques, it will be useful reference for researchers and practising engineers in the space field.
This book systematically presents the concept, history, implementation, theory system and basic methods of pulsar and space flight, illustrating the characteristics of pulsars. It also describes the classification of spacecraft navigation systems and the autonomous navigation technologies, as well as X-ray pulsar-based navigation systems (XPNAV) and discusses future navigation satellite systems in detail.
This book presents best selected research papers presented at the Thirteenth International Conference on Applied Mathematics and Mechanics in the Aerospace Industry (AMMAI 2020), held from September 6 to September 13, 2020, at the Alushta Health and Educational Center (The Republic of Crimea). The book is dedicated to solving actual problems of applied mechanics using modern computer technology including smart paradigms. Physical and mathematical models, numerical methods, computational algorithms, and software complexes are discussed, which allow to carry out high-precision mathematical modeling in fluid, gas, and plasma mechanics, in general mechanics, deformable solid mechanics, in strength, destruction and safety of structures, etc. Technologies and software systems that provide effective solutions to the problems at various multi-scale levels are considered. Special attention is paid to the training of highly qualified specialists for the aviation and space industry. The book is recommended for specialists in the field of applied mathematics and mechanics, mathematical modeling, information technologies, and developers of modern applied software systems.
This book highlights the design principles of ground based radio-navigation systems used in solving navigation tasks in the airfield and on air routes. Mathematical correlations are illustrated that describe its operation, peculiarities of disposition, main technical characteristics, generalized structural diagrams as well as the inter-operation with onboard equipment. Examples of building, construction, functional diagrams, and characteristics of Russian made radio-navigation systems are discussed. This book is written for students of electronics and aviation disciplines. It can also be useful for aviation specialists as well as for those interested in air radio-navigation.
This book highlights the prevention of possible accidents and crashes of aircrafts by analyzing the many factors that affect such events. It includes the theoretical study of known ideas and concepts, as well as a set of new methods and mathematical models. It contains factual information to investigate famous disasters and aviation accidents with aircrafts. The book proposes methods and models that can be the basis in developing guidance material for decision-making by the flight crew and experts in air traffic control. Some of the contents presented in this book are also useful in the design and operation of data transmission systems of aircraft. The book is intended for engineering and technical specialists engaged in the development, manufacturing and operations of onboard radio electronic systems of aircraft and ground-based radio engineering support for flights, as well as graduate students and senior students of radio engineering specialties. It is useful to researchers and managers whose activities are related to air traffic control.
This book analyses the models for major risks related to flight safety in the aviation sector and presents risk estimation methods through examples of several known aviation enterprises. The book provides a comprehensive content for professionals engaged in the development of flight safety regulatory framework as well as in the design and operation of ground-based or on-board flight support radio electronic systems. The book is also useful for senior students and postgraduates in aviation specialties, especially those related to air traffic management.
This book provides an overview of advanced prediction and verification technologies for aerodynamics and aerothermodynamics and assesses a number of critical issues in advanced hypersonic vehicle design. Focusing on state-of-the-art theories and promising technologies for engineering applications, it also presents a range of representative practical test cases. Given its scope, the book offers a valuable asset for researchers who are interested in thermodynamics, aircraft design, wind tunnel testing, fluid dynamics and aerothermodynamics research methods, introducing them to inspiring new research topics.
This proceedings volume contains selected and expanded contributions presented at the 6th International Symposium of Space Optical Instruments and Applications, held in Delft, the Netherlands on Sep 24th-25th, 2019. The meeting was organized by the Sino-Holland Space Optical Instruments Joint Laboratory and supported by TU Delft.The symposium focused on key innovations of space-based optical instruments and applications, and the newest developments in theory, technology and applications in optics, in both China and Europe. It thus provided a platform for exchanges on the latest research and current and planned optical missions. The major topics covered in these conference proceedings are: space optical remote sensing system design; advanced optical system design and manufacturing; remote sensor calibration and measurement; remote sensing data processing and information retrieval; and remote sensing data applications.
This book provides novel concepts and techniques for air traffic management (ATM) and communications, navigation, and surveillance (CNS) systems. The book consists of selected papers from the 6th ENRI International Workshop on ATM/CNS (EIWAC2019) held in Tokyo in October 2019, the theme of which was "Exploring Ideas for World Aviation Challenges". Included are key topics to realize safer and more efficient skies in the future, linked to the integrated conference theme consisting of long-term visions based on presentations from various fields. The book is dedicated not only to researchers, academicians, and university students, but also to engineers in the industry, air navigation service providers (ANSPs), and regulators of aviation.
In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.
Provides a significant update to the definitive book on aircraft system design This book is written for anyone who wants to understand how industry develops the customer requirement for aircraft into a fully integrated, tested, and qualified product that is safe to fly and fit for purpose. The new edition of Design and Development of Aircraft Systems fully expands its already comprehensive coverage to include both conventional and unmanned systems. It also updates all chapters to bring them in line with current design practice and technologies taught in courses at Cranfield, Bristol, and Loughborough universities in the UK. Design and Development of Aircraft Systems, 3rd Edition begins with an introduction to the subject. It then introduces readers to the aircraft systems (airframe, vehicle, avionic, mission, and ground systems). Following that comes a chapter on the design and development process. Other chapters look at design drivers, systems architectures, systems integration, verification of system requirements, practical considerations, and configuration control. The book finishes with sections that discuss the potential impact of complexity on flight safety, key characteristics of aircraft systems, and more. Provides a holistic view of aircraft system design, describing the interactions among subsystems such as fuel, navigation, flight control, and more Substantially updated coverage of systems engineering, design drivers, systems architectures, systems integration, modelling of systems, practical considerations, and systems examples Incorporates essential new material on the regulatory environment for both manned and unmanned systems Discussion of trends towards complex systems, automation, integration and the potential for an impact on flight safety Design and Development of Aircraft Systems, 3rd Edition is an excellent book for aerospace engineers, researchers, and graduate students involved in the field.
Discover the enthralling story of how we took to the skies, in this journey through over 100 years of airborne innovation and adventure. From the Wright brothers' first powered flight to Concorde's final voyage, Flight takes you sky-high, swooping you through world aviation history. Featuring spectacular photography of iconic aircraft, this book also recounts the feats of pioneers, trailblazers, and jet test pilots, and traces the technological developments so important to aviation's progress. Memorable moments of aerial warfare and record-breaking flights are recalled alongside more than 250 profiles of innovative aircraft in this book packed with flight facts for the aviation enthusiast. The human experience of flying is documented too, and historical quotes give a glimpse into the thoughts and ambitions of key figures in flight history. So board now and follow a journey full of achievement, adventure, and tragedy in Flight and see how our dream to fly became a reality.
This book provides a systematical and comprehensive description of some facets of modeling, designing, analyzing and exploring the control allocation and fault-tolerant control problems for over-actuated spacecraft attitude control system under actuator failures, system uncertainties and disturbances. The book intends to provide a unified platform for understanding and applicability of the fault-tolerant attitude control and control allocation for different purposes in aerospace engineering and some related fields. And it is particularly suited for readers who are interested to learn solutions in spacecraft attitude control system design and related engineering applications.
This book offers a vision of how evolutionary life processes can be modelled. It presents a mathematical description that can be used not only for the full evolution of life on Earth from RNA to modern human societies, but also the possible evolution of life on exoplanets, thus leading to SETI, the current Search for ExtraTerrestrial Intelligence. The main premise underlying this mathematical theory is that the Geometric Brownian Motion (GBM) can be applied as a key stochastic process to model the evolution of life. In the resulting Evo-SETI Theory, the life of any living thing (a cell, an animal, a human, a civilization of humans, or even an ET civilization) is represented by a b-lognormal, i.e., a lognormal probability density function starting at a precise instant (b, birth) then increasing up to a peak time, then decreasing to senility time and then continuing as a straight line down to the time of death. Using this theory, Claudio Maccone arrives at remarkable hypotheses on the development of life and civilizations, the possibility of extraterrestrial life, and when computers will take over the reins from us humans (Singularity). The book develops the mathematical Evo-SETI Theory by integrating a set of articles that the author has published in various journals on Astrobiology and Astronautical Research.
The Magnesium Technology Symposium, the event on which this collection is based, is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications to recycling. Moreover, papers explore everything from basic research findings to industrialization. Magnesium Technology 2021 is a definitive reference that covers a broad spectrum of current topics, including novel extraction techniques; primary production; alloys and their production; thermodynamics and kinetics; cast products and processing; wrought products and processing; forming, joining, and machining; corrosion and surface finishing; structural applications; degradation and biomedical applications; and several others. |
You may like...
We Seven - By the Astronauts Themselves
Scott M Carpenter, Gordon L Cooper, …
Paperback
The Wright Brothers - The Dramatic Story…
David McCullough
Paperback
(2)
The Entomologist's Record and Journal of…
James William 1858-1911 Tutt
Hardcover
R861
Discovery Miles 8 610
Aeronautics; v. 11-12
Aeronautical Society of America, Aero Club of Pennsylvania
Hardcover
R1,056
Discovery Miles 10 560
The Entomologist's Record and Journal of…
James William 1858-1911 Tutt
Hardcover
R862
Discovery Miles 8 620
|