![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Computer hardware & operating systems > Computer architecture & logic design > General
This book equips readers with tools for computer architecture of high performance, low power, and high reliability memory hierarchy in computer systems based on emerging memory technologies, such as STTRAM, PCM, FBDRAM, etc. The techniques described offer advantages of high density, near-zero static power, and immunity to soft errors, which have the potential of overcoming the "memory wall." The authors discuss memory design from various perspectives: emerging memory technologies are employed in the memory hierarchy with novel architecture modification; hybrid memory structure is introduced to leverage advantages from multiple memory technologies; an analytical model named "Moguls" is introduced to explore quantitatively the optimization design of a memory hierarchy; finally, the vulnerability of the CMPs to radiation-based soft errors is improved by replacing different levels of on-chip memory with STT-RAMs.
This book first provides a comprehensive coverage of state-of-the-art validation solutions based on real-time signal tracing to guarantee the correctness of VLSI circuits. The authors discuss several key challenges in post-silicon validation and provide automated solutions that are systematic and cost-effective. A series of automatic tracing solutions and innovative design for debug (DfD) techniques are described, including techniques for trace signal selection for enhancing visibility of functional errors, a multiplexed signal tracing strategy for improving functional error detection, a tracing solution for debugging electrical errors, an interconnection fabric for increasing data bandwidth and supporting multi-core debug, an interconnection fabric design and optimization technique to increase transfer flexibility and a DfD design and associated tracing solution for improving debug efficiency and expanding tracing window. The solutions presented in this book improve the validation quality of VLSI circuits, and ultimately enable the design and fabrication of reliable electronic devices.
This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect. It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools. Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliability. Case studies are used to illuminate new design methodologies.
This book describes the most recent techniques for turbo decoder implementation, especially for 4G and beyond 4G applications. The authors reveal techniques for the design of high-throughput decoders for future telecommunication systems, enabling designers to reduce hardware cost and shorten processing time. Coverage includes an explanation of VLSI implementation of the turbo decoder, from basic functional units to advanced parallel architecture. The authors discuss both hardware architecture techniques and experimental results, showing the variations in area/throughput/performance with respect to several techniques. This book also illustrates turbo decoders for 3GPP-LTE/LTE-A and IEEE 802.16e/m standards, which provide a low-complexity but high-flexibility circuit structure to support these standards in multiple parallel modes. Moreover, some solutions that can overcome the limitation upon the speedup of parallel architecture by modification to turbo codec are presented here. Compared to the traditional designs, these methods can lead to at most 33% gain in throughput with similar performance and similar cost.
This book describes the various tradeoffs systems designers face when designing embedded memory. Readers designing multi-core systems and systems on chip will benefit from the discussion of different topics from memory architecture, array organization, circuit design techniques and design for test. The presentation enables a multi-disciplinary approach to chip design, which bridges the gap between the architecture level and circuit level, in order to address yield, reliability and power-related issues for embedded memory.
This book introduces a new level of abstraction that closes the gap between the textual specification of embedded systems and the executable model at the Electronic System Level (ESL). Readers will be enabled to operate at this new, Formal Specification Level (FSL), using models which not only allow significant verification tasks in this early stage of the design flow, but also can be extracted semi-automatically from the textual specification in an interactive manner. The authors explain how to use these verification tasks to check conceptual properties, e.g. whether requirements are in conflict, as well as dynamic behavior, in terms of execution traces.
This book analyzes energy and reliability as major challenges faced by designers of computing frameworks in the nanometer technology regime. The authors describe the existing solutions to address these challenges and then reveal a new reconfigurable computing platform, which leverages high-density nanoscale memory for both data storage and computation to maximize the energy-efficiency and reliability. The energy and reliability benefits of this new paradigm are illustrated and the design challenges are discussed. Various hardware and software aspects of this exciting computing paradigm are described, particularly with respect to hardware-software co-designed frameworks, where the hardware unit can be reconfigured to mimic diverse application behavior. Finally, the energy-efficiency of the paradigm described is compared with other, well-known reconfigurable computing platforms.
This three-volume set of books presents advances in the development of concepts and techniques in the area of new technologies and contemporary information system architectures. It guides readers through solving specific research and analytical problems to obtain useful knowledge and business value from the data. Each chapter provides an analysis of a specific technical problem, followed by the numerical analysis, simulation and implementation of the solution to the problem. The books constitute the refereed proceedings of the 2017 38th International Conference "Information Systems Architecture and Technology," or ISAT 2017, held on September 17-19, 2017 in Szklarska Poreba, Poland. The conference was organized by the Computer Science and Management Systems Departments, Faculty of Computer Science and Management, Wroclaw University of Technology, Poland. The papers have been organized into topical parts: Part I- includes discourses on topics including, but not limited to, Artificial Intelligence Methods, Knowledge Discovery and Data Mining, Big Data, Knowledge Discovery and Data Mining, Knowledge Based Management, Internet of Things, Cloud Computing and High Performance Computing, Distributed Computer Systems, Content Delivery Networks, and Service Oriented Computing. Part II-addresses topics including, but not limited to, System Modelling for Control, Recognition and Decision Support, Mathematical Modelling in Computer System Design, Service Oriented Systems and Cloud Computing and Complex Process Modeling. Part III-deals with topics including, but not limited to, Modeling of Manufacturing Processes, Modeling an Investment Decision Process, Management of Innovation, Management of Organization.
• Showcases today's most influential architectural voices who have been instrumental in shifting the direction of design in the last decade • Includes perspectives of influential architects, practitioners and academics, as well as critics including philosophers • Case studies and essays engage and deploy a range of topics and technologies from speculative realism and Object Oriented Ontology to high computation, Big Data, parametricism, digital fabrication, artificial intelligence, augmented reality and virtual reality • A rigorous account of architecture's theoretical and technological concerns over the last decade
Takes a fresh look at basic digital design. From definition, to example, to graphic illustration, to simulation result, the book progresses through the main themes of digital design. Technically up-to-date, this book covers all the latest topics: Field programmable gate arrays, PALs and ROMs. The latest memory chips for SRAM and DRAM are shown. Software for creating the excitation equations of FSM are covered, as well as LogicWorks and Beige Bag PC and more.
This volume shows how ICT (information and communications technology) can play the role of a driver of business process reengineering (BPR). ICT can aid in enabling improvement in BPR activity cycles as it provides many components that enhance performance that can lead to competitive advantages. IT can interface with BPR to improve business processes in terms of communication, inventory management, data management, management information systems, customer relationship management, computer-aided design, computer-aided manufacturing (CAM), and computer-aided engineering. This volume explores these issues in depth.
High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC's Novo-G and EPCC's Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL's CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft's Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.
This book covers layout design and layout migration methodologies for optimizing multi-net wire structures in advanced VLSI interconnects. Scaling-dependent models for interconnect power, interconnect delay and crosstalk noise are covered in depth, and several design optimization problems are addressed, such as minimization of interconnect power under delay constraints, or design for minimal delay in wire bundles within a given routing area. A handy reference or a guide for design methodologies and layout automation techniques, this book provides a foundation for physical design challenges of interconnect in advanced integrated circuits.
Thomas Ludwig reveals design characteristics when aiming at researching information infrastructures and their diverse information resources, types of users and systems as well as divergent practices. By conducting empirically-based design case studies in the domain of crisis management, the author uncovers methodological and design challenges in understanding new kinds of interconnected information infrastructures from a praxeological perspective. Based on implemented novel ICT tools, he derives design characteristics that focus on integrating objective and subjective queried insights into situated activities of people as well as emphasizing the subjective nature of information quality.
This four volume set of books constitutes the proceedings of the 36th International Conference Information Systems Architecture and Technology 2015, or ISAT 2015 for short, held on September 20-22, 2015 in Karpacz, Poland. The conference was organized by the Computer Science and Management Systems Departments, Faculty of Computer Science and Management, Wroclaw University of Technology, Poland. The papers included in the proceedings have been subject to a thorough review process by highly qualified peer reviewers. The accepted papers have been grouped into four parts: Part I-addressing topics including, but not limited to, systems analysis and modeling, methods for managing complex planning environment and insights from Big Data research projects. Part II-discoursing about topics including, but not limited to, Web systems, computer networks, distributed computing, and multi-agent systems and Internet of Things. Part III-discussing topics including, but not limited to, mobile and Service Oriented Architecture systems, high performance computing, cloud computing, knowledge discovery, data mining and knowledge based management. Part IV-dealing with topics including, but not limited to, finance, logistics and market problems, and artificial intelligence methods.
This four volume set of books constitutes the proceedings of the 36th International Conference Information Systems Architecture and Technology 2015, or ISAT 2015 for short, held on September 20-22, 2015 in Karpacz, Poland. The conference was organized by the Computer Science and Management Systems Departments, Faculty of Computer Science and Management, Wroclaw University of Technology, Poland. The papers included in the proceedings have been subject to a thorough review process by highly qualified peer reviewers. The accepted papers have been grouped into four parts: Part I-addressing topics including, but not limited to, systems analysis and modeling, methods for managing complex planning environment and insights from Big Data research projects. Part II-discoursing about topics including, but not limited to, Web systems, computer networks, distributed computing, and multi-agent systems and Internet of Things. Part III-discussing topics including, but not limited to, mobile and Service Oriented Architecture systems, high performance computing, cloud computing, knowledge discovery, data mining and knowledge based management. Part IV-dealing with topics including, but not limited to, finance, logistics and market problems, and artificial intelligence methods.
TensorFlow is a one-stop solution for building, monitoring, optimizing,and deploying your models. This practical guide to building deep learning models with the new features of TensorFlow 2.0is filled with engaging projects, simple language, and coverage of the latest algorithms. TensorFlow 2.0 in Action teaches you to use the new features of TensorFlow 2.0 to create advanced deep learning models. You'll learn by building hands-on projects including an image classifier that can recognize objects, a French-to-English machine translator, and even a neural network that can write fiction. You'll dive into the details of modern deep learning techniques including both transformer and attention models, and learn how pretrained models can solve your tricky data science- problems. TensorFlow is the go-to framework for putting deep learning into production. Created by Google, this ground breaking tool handles repetitive low-level operations and frees you up to focus on innovating your AIs.TensorFlow encompasses almost every element of a deep learning pipeline-aone-stop solution for building, monitoring, optimizing, and deploying your models.
This book constitutes the thoroughly refereed proceedings of the 11th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2016, held in Rome, Italy, in April 2016. The 11 full papers presented were carefully reviewed and selected from 79 submissions. The mission of ENASE is to be a prime international forum to discuss and publish research findings and IT industry experiences with relation to the evaluation of novel approaches to software engineering. The conference acknowledges necessary changes in systems and software thinking due to contemporary shifts of computing paradigm to e-services, cloud computing, mobile connectivity, business processes, and societal participation.
This book describes scalable and near-optimal, processor-level design space exploration (DSE) methodologies. The authors present design methodologies for data storage and processing in real-time, cost-sensitive data-dominated embedded systems. Readers will be enabled to reduce time-to-market, while satisfying system requirements for performance, area, and energy consumption, thereby minimizing the overall cost of the final design.
This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems. The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application. The design methodology described in this book is based on propagating constraints among design decisions from multiple abstraction levels (both hardware and software) and customizing DMM according to application-specific data access and storage behaviors.
This book describes novel methods for network-on-chip (NoC) design, using source-synchronous high-speed resonant clocks. The authors discuss NoCs from the bottom up, providing circuit level details, before providing architectural simulations. As a result, readers will get a complete picture of how a NoC can be designed and optimized. Using the methods described in this book, readers are enabled to design NoCs that are 5X better than existing approaches in terms of latency and throughput and can also sustain a significantly greater amount of traffic.
This book offers readers broad coverage of techniques to model, verify and validate the behavior and performance of complex distributed embedded systems. The authors attempt to bridge the gap between the three disciplines of model-based design, real-time analysis and model-driven development, for a better understanding of the ways in which new development flows can be constructed, going from system-level modeling to the correct and predictable generation of a distributed implementation, leveraging current and future research results.
The book addresses the need to investigate new approaches to lower energy requirement in multiple application areas and serves as a guide into emerging circuit technologies. It explores revolutionary device concepts, sensors, and associated circuits and architectures that will greatly extend the practical engineering limits of energy-efficient computation. The book responds to the need to develop disruptive new system architectures and semiconductor processes aimed at achieving the highest level of computational energy efficiency for general purpose computing systems. Discusses unique technologies and material only available in specialized journal and conferences. Covers emerging materials and device structures, such as ultra-low power technologies, nanoelectronics, and microsystem manufacturing. Explores semiconductor processing and manufacturing, device design, and performance. Contains practical applications in the engineering field, as well as graduate studies. Written by international experts from both academia and industry.
This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking.
This book describes how engineers can make optimum use of the two industry standard analysis/design tools, SystemC and SystemC-AMS. The authors use a system-level design approach, emphasizing how SystemC and SystemC-AMS features can be exploited most effectively to analyze/understand a given electronic system and explore the design space. The approach taken by this book enables system engineers to concentrate on only those SystemC/SystemC-AMS features that apply to their particular problem, leading to more efficient design. The presentation includes numerous, realistic and complete examples, which are graded in levels of difficulty to illustrate how a variety of systems can be analyzed with these tools. |
You may like...
The System Designer's Guide to VHDL-AMS…
Peter J Ashenden, Gregory D. Peterson, …
Paperback
R2,281
Discovery Miles 22 810
Advances in Delay-Tolerant Networks…
Joel J. P. C. Rodrigues
Paperback
R4,669
Discovery Miles 46 690
High-Performance Computing Using FPGAs
Wim Vanderbauwhede, Khaled Benkrid
Hardcover
R6,662
Discovery Miles 66 620
Best Practices and New Perspectives in…
Patricia Ordonez De Pablos, Robert Tennyson
Hardcover
R4,729
Discovery Miles 47 290
Novel Approaches to Information Systems…
Naveen Prakash, Deepika Prakash
Hardcover
R5,924
Discovery Miles 59 240
|