|
|
Books > Social sciences > Sociology, social studies > Social issues > Social impact of disasters > General
On September 5, 1996, Hurricane Fran made landfall near Cape Fear,
North Carolina and generated considerable rainfall, moderately high
winds, and storm surge and waves along the cost. Although the storm
generated high winds along the coast and well inland, severe damage
to buildings was concentrated in those areas also impacted by the
flood surge and waves. This report focuses on the damage along the
North Carolina coast that resulted from flood surge, wave action,
erosion, and scour. On September 12, 1996, the Mitigation
Directorate of the Federal Emergency Management Agency (FEMA)
deployed a Building Performance Assessment Team (BPAT) to coastal
North Carolina to assess damage caused by Hurricane Fran. The
mission of the BPAT was to assess the performance of buildings on
the barrier islands most directly affected by Hurricane Fran and to
make recommendations for improving building performance in future
events. Better performance of building systems can be expected when
the causes of observed failures are determined and repair and
construction are undertaken in accordance with recognized standards
of design and construction. The immediate goal of the BPAT process
is to provide guidance to State and local governments for
post-hurricane reconstruction. In addition, the BPAT's findings can
enhance future coastal design and construction. The BPAT developed
recommendations for reducing future hurricane damage. The
recommendations address areas of concern such as building
materials, design practices, construction techniques, and quality
of construction. The recommendations presented in this report are
applicable in other communities that experience similar coastal
flooding. This report presents the BPAT's observations of the
successes and failures of buildings that experienced the flood
effects of Hurricane Fran, comments on building failure modes, and
provides recommendations intended to enhance the performance of
buildings in future hurricanes.
A salute to life is a commemorative book honoring the thousands of
lives that were, and continue to be, impacted by the terrorist
attacks of September 11, 2001.
Preparedness is the shared responsibility of all levels of
government, the private and nonprofit sectors, and individual
citizens. Individuals and households are at the core of our
Nation's preparedness. A community's ability to respond to or
recover from a disaster depends on the level of preparedness of
every member. However, a 2009 Citizen Corps National Survey found
that 29 percent of Americans have not prepared because they think
that emergency responders will help them and that over 60 percent
expect to rely on emergency responders in the first 72 hours
following a disaster. The reality is that in a complex disaster,
first responders and emergency workers may not be able to reach
everyone right away. In addition, providers may not be able to
restore critical services, such as power, immediately. The purpose
of this initiative is to promote personal and community
preparedness through engaging activities for individuals,
neighbors, or households. These activities are a set of building
blocks. You can mix and match the activities based on the needs of
your target audience or time available. Most activities can be
completed during a 15-minute to 60-minute session. You should adapt
the materials to include critical local information, such as
information on local hazards, local alerts and warnings, and local
community response resources and protocols. Remember, preparedness
does not have to be complex or overly time consuming. Rather, it
should motivate, empower, and engage the whole community.
Fire departments in the United States responded to nearly 1.6
million fire calls in 2007. The United States fire problem, on a
per capita basis, is one of the worst in the industrial world.
Thousands of Americans die each year, tens of thousands of people
are injured, and property losses reach billions of dollars. There
are huge indirect costs of fire as well-temporary lodging, lost
business, medical expenses, psychological damage, and others. These
indirect costs may be as much as 8- to 10-times higher than the
direct costs of fire. To put this in context, the annual losses
from floods, hurricanes, tornadoes, earthquakes, and other natural
disasters combined in the United States average just a fraction of
those from fires. The public, the media, and local governments
generally are unaware of the magnitude and seriousness of the fire
problem to individuals and their families, to communities, and to
the Nation. The National Fire Data Center (NFDC) of the U.S. Fire
Administration (USFA) periodically publishes Fire in the United
States, a statistical overview of the fires in the United States
with the focus on the latest year in which data were available at
the time of preparation. This report is designed to equip the fire
service and others with information that motivates corrective
action, sets priorities, targets specific fire programs, serves as
a model for State and local analyses of fire data, and provides a
baseline for evaluating programs. This Fifteenth Edition covers the
5-year period of 2003 to 2007 with a primary focus on 2007. Only
native National Fire Incident Reporting System (NFIRS) 5.0 data are
used for NFIRS-based analyses. In 2007, the native NFIRS 5.0 data
account for 98 percent of the fire incident data. The report
addresses the overall national fire problem.
Past storms such as Hurricanes Andrew, Hugo, Charley, Katrina, and
Rita, and recent events such as Hurricane Ike continue to show the
vulnerability of our built environment. While good design and
construction cannot totally eliminate risk, every storm has shown
that sound design and construction can significantly reduce the
risk to life and damage to property. With that in mind, the Federal
Emergency Management Agency (FEMA) has developed this manual to
help the community of homebuilders, contractors, and local
engineering professionals in rebuilding homes destroyed by
hurricanes, and designing and building safer and less vulnerable
new homes. The intent of the manual is to provide homebuilders,
contractors, and engineering professionals with a series of
recommended foundation designs that will help create safer and
stronger buildings in coastal areas. The designs are intended to
help support rebuilding efforts after coastal areas have been
damaged by floods, high winds, or other natural hazards. The
foundations may differ somewhat from traditional construction
techniques; however, they represent what are considered to be some
of the better approaches to constructing strong and safe
foundations in hazardous coastal areas. The objectives used to
guide the development of this manual are: To provide residential
foundation designs that will require minimal engineering oversight;
To provide foundation designs that are flexible enough to
accommodate many of the homes identified in A Pattern Book for Gulf
Coast Neighborhoods prepared for the Mississippi Governor's
Rebuilding Commission on Recovery, Rebuilding, and Renewal; To
utilize model layouts so that many homes can be constructed without
significant additional engineering efforts. The focus of this
document is on the foundations of residential buildings. The
assumption is that those who are designing and building new homes
will be responsible for ensuring that the building itself is
designed according to the latest building code (International
Building Code(r), International Residential Code(r), and FEMA
guidance) and any local requirements. The user of this manual is
directed to other publications that also address disaster-resistant
construction. Although the foundation designs are geared to the
coastal environment subject to storm surge, waves, floating debris,
and high winds, several are suitable for supporting homes on sites
protected by levees and floodwalls or in riverine areas subjected
to high-velocity flows. Design professionals can be contacted to
ensure the foundation designs provided in this manual are suitable
for specific sites. This edition of FEMA 550 introduces the Case H
foundation, which is an open/deep foundation developed for use in
coastal high hazard areas (V zones). It is also appropriate to use
the Case H foundation in Coastal A and non-coastal A zones. Case H
foundations incorporate elevated reinforced concrete beams that
provide three important benefits. One, the elevated beams work in
conjunction with the reinforced concrete columns and grade beams to
produce a structural frame that is more efficient at resisting
lateral loads than the grade beams and cantilevered columns used in
other FEMA 550 open foundations. The increased efficiency allows
foundations to be constructed with smaller columns that are less
exposed to flood forces. The second benefit is that the elevated
reinforced concrete beams provide a continuous foundation that can
support many homes constructed to prescriptive designs from codes
and standards such as the IRC, the American Forest and Paper
Association's Wood Frame Construction Manual for One- and
Two-Family Dwellings (WFCM), and the International Code Council's
Standard for Residential Construction in High Wind Regions
(ICC-600). The third benefit that Case H foundations provide is the
ability to support relatively narrow homes. It is anticipated that
Case H foundations can be used for several styles of modular ho
This guide was developed to fulfill several different objectives
and address a wide audience with varying needs. The primary intent
is to explain the sources of nonstructural earthquake damage in
simple terms and to provide information on effective methods of
reducing the potential risks. The recommendations contained in this
guide are intended to reduce the potential hazards but cannot
completely eliminate them. The primary focus of this guide is to
help the reader understand which nonstructural items are most
vulnerable in an earthquake and most likely to cause personal
injury, costly property damage, or loss of function if they are
damaged. In addition, this guide contains recommendations on how to
implement cost effective measures that can help to reduce the
potential hazards. This guide is intended primarily for use by a
lay Audience building owners, facilities managers, maintenance
personnel, store or office managers, corporate/agency department
heads, business proprietors, homeowners, etc. Some readers may be
small-business owners with a small number of potential problems
that could be addressed in a few days' time by having at handyman
install some of the generic details presented in this guide. Other
readers may be responsible for hundreds of facilities and may need
a survey methodology to help them understand the magnitude of their
potential problems.
Early on the morning of 4th September 2010, a series of seismic
events began to unfold in Christchurch, New Zealand. They would
eventually take 185 lives and directly affect hundreds of thousands
of men, women and children. This book is a compilation of stories
from some of these people. Preschoolers, teenagers, families, and
retirees tell of the impact of the ongoing earthquakes and
aftershocks, the emotional and physical toll they exacted, and
their hope for a new Christchurch. They reflect the incredible
resilience the people of Canterbury have shown throughout this
devastating time. Some of the stories are poignant, some humorous,
some shocking and some sad. All of them are from the heart and
deserve to be heard. Magnitude 7.1 & 6.3 was put together by
Debbie Roome who is an award-winning novelist and freelance writer
with 25 years experience.
Earthquakes represent an enormous threat to the Nation. Although
damaging earthquakes occur infrequently, their consequences can be
staggering. As recent earthquakes around the world have
demonstrated, high population densities and development pressures,
particularly in urban areas, are increasingly vulnerable.
Unacceptably high loss of life and enormous economic consequences
are associated with recent global earthquakes, and it is only a
matter of time before the United States faces a similar experience.
Earthquakes cannot be prevented, but their impacts can be managed
to a large degree so that loss to life and property can be reduced.
To this end, the National Earthquake Hazards Reduction Program
(NEHRP) seeks to mitigate earthquake losses in the U.S. through
both basic and directed research and implementation activities in
the fields of earthquake science and engineering. This program is
authorized and funded by Congress and is managed as a collaborative
effort among the Federal Emergency Management Agency (FEMA), the
National Institute of Standards and Technology (NIST), the National
Science Foundation (NSF), and the United States Geological Survey
(USGS). These four Federal organizations work in close coordination
to improve the Nation's understanding of earthquake hazards and to
mitigate their effects. The missions of the four agencies are
complementary: FEMA, a component of the Department of Homeland
Security, works with states, local governments, and the public to
develop tools and improve policies and practices that reduce
earthquake losses; NIST enables technology innovation in earthquake
engineering by working with industry to remove technical barriers,
evaluate advanced technologies, and develop the measurement and
prediction tools underpinning performance standards for buildings
and lifelines; NSF strives to advance fundamental knowledge in
earthquake engineering, earth science processes, and societal
preparedness and response to earthquakes; and USGS monitors
earthquakes, assesses seismic hazard for the Nation, and researches
the basic earth science processes controlling earthquake occurrence
and effects. Mindful of the increasing threat posed by earthquakes,
NEHRP initiated a review of the scientific goals and strategies of
the Program and a discussion of the opportunities and priorities
for the five-year interval 2001-2005. This review and discussion
culminated in the new strategic plan presented here. Shaping the
plan are four goals that represent the continuum of activities in
the Program, ranging from research and development to application
and implementation. These four goals are as follows: A. Develop
effective practices and policies for earthquake loss-reduction and
accelerate their implementation. B. Improve techniques to reduce
seismic vulnerability of facilities and systems. C. Improve seismic
hazard identification and risk assessment methods and their use. D.
Improve the understanding of earthquakes and their effects.
David Alexander provides a concise yet comprehensive and systematic
primer on how to prepare for a disaster. The book introduces the
methods, procedures, protocols and strategies of emergency
planning, with an emphasis on situations within industrialized
countries. It is designed to be a reference source and manual from
which emergency mangers can extract ideas, suggestions and
pro-forma methodologies to help them design and implement emergency
plans.
|
|