![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science
With nanotechnology being a relatively new field, the questions regarding safety and ethics are steadily increasing with the development of the research. This book aims to give an overview on the ethics associated with employing nanoscience for products with everyday applications. The risks as well as the regulations are discussed, and an outlook for the future of nanoscience on a manufacturer's scale and for the society is provided. Ethics in nanotechnology is a valuable resource for, philosophers, academicians and scientist, as well as all other industry professionals and researchers who interact with emerging social and philosophical ethical issues on routine bases. It is especially for deep learners who are enthusiastic to apprehend the challenges related to nanotechnology and ethics in philosophical and social education. This book presents an overview of new and emerging nanotechnologies and their societal and ethical implications. It is meant for students, academics, scientists, engineers, policy makers, ethicist, philosophers and all stakeholders involved in the development and use of nanotechnology.
Nanotechnology for Oral Drug Delivery: From Concept to Applications discusses the current challenges of oral drug delivery, broadly revising the different physicochemical barriers faced by nanotechnolgy-based oral drug delivery systems, and highlighting the challenges of improving intestinal permeability and drug absorption. Oral delivery is the most widely used form of drug administration due to ease of ingestion, cost effectiveness, and versatility, by allowing for the accommodation of different types of drugs, having the highest patient compliance. In this book, a comprehensive overview of the most promising and up-to-date engineered and surface functionalized drug carrier systems, as well as opportunities for the development of novel and robust delivery platforms for oral drug administration are discussed. The relevance of controlling the physicochemical properties of the developed particle formulations, from size and shape to drug release profile are broadly reviewed. Advances in both in vitro and in vivo scenarios are discussed, focusing on the possibilities to study the biological-material interface. The industrial perspective on the production of nanotechnology-based oral drug delivery systems is also covered. Nanotechnology for Oral Drug Delivery: From Concept to Applications is essential reading for researchers, professors, advanced students and industry professionals working in the development, manufacturing and/or commercialization of nanotechnology-based systems for oral drug delivery, targeted drug delivery, controlled drug release, materials science and biomaterials, in vitro and in vivo testing of potential oral drug delivery technologies.
Over the past few decades, there has been unprecedented progress in the design of versatile biopolymer-based nanoplatforms for pharmaceutical and biomedical applications, particularly due to their attractive traits, including excellent biocompatibility, outstanding biodegradability, low immunogenicity, and facile chemical modifiability. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications serves as a clear and detailed body of information on the synthesis and characterization of biopolymer-based materials in nanomedicine. This book describes various nanomaterials consisting of biopolymers including polysaccharides (i.e., derived from plants, animals, bacteria, algae, and fungi) and polypeptides in terms of their structures, synthetic protocols, and characterization and uses as therapeutic drugs and gene delivery carriers and in other biomedical fields. The chapters of this book, which are contributed by internationally renowned scholars working in the arena of biopolymer-based nanomaterials, would offer a wide vision on the potential future applications of these nanomaterials in the delivery and targeting of bioactive molecules of pharmaceutical interests and in tissue engineering, biosensing, bioimaging, and diagnostic purposes. The state-of-the-art information presented in the book would also encourage young investigators and researchers to further bring cutting-edge developments in the field of nanomedicine in the near future.
Water Hammer Simulations is a comprehensive guide to modelling transients in closed pipes. The models presented range from those used for the first studies into the field to the most advanced available today. All of the models are described in detail, starting from the simplest to the most complex. Most of the presented models have been implemented in computer codes, which are provided with the book as both executable files and the sources. The use of these programs is explained in the book where they are applied in a number of examples; the results are critically commented, to allow the reader to be able to build an appropriate model for their own use. Suggestions on the most appropriate model to be built and used are provided throughout the book. Laboratory tests and real case applications are also presented and discussed, together with the still unresolved problems in the field. The focus of researcher's efforts we will be on these issues in the coming years. The book is suitable for professionals working in the field as well as scholars and undergraduate students.
"Rubber Seals for Fluid and Hydraulic Systems" is a comprehensive guide to the manufacturing and applications of rubber seals, with essential coverage for industry sectors including aviation, oil drilling and the automotive industry. Fluid leakage costs industry millions of dollars every year. In addition to wasted money, unattended leaks can result in downtime, affect product quality, pollute the environment, and cause injury. Successful sealing involves containment of fluid within a system while excluding the contaminants; the resilience of rubber enables it to be used to achieve these two objectives and create a tight sealing effect. A sound understanding of the complex factors involved in successful fluid sealing is essential for engineers who specify, design, operate and maintain machinery and mechanical equipment. This book focuses on the characteristics of rubbers as seals, their manufacturing procedures, the implications of their physical and chemical characteristics for the sealing function in the fluid and hydraulic systems, how rubbers seal and prevent leaks, what properties are required for sealing function, and how they change before and after installation. The chapter on Manufacture of Seals and O Rings includes
approximately 25 workable starting point formulations based on
different rubbers, with cure and property data of those
formulations as guidelines for technologists and engineers.
The book focuses on the development of high performance, high efficiency electroactive polymers (EAPs), and electromechanically active polymers by controlling molecular chemical structure and morphology for all applications. This book is ideal for academicians and researchers in polymer and materials science.
Externally tunable properties allow for new applications of magnetic hybrid materials containing magnetic micro- and nanoparticles in sensors and actuators in technical and medical applications. By means of easy to generate and control magnetic fields, changes of the internal particle arrangements and the macroscopic properties can be achieved. This monograph delivers the latest insights into multi-scale modelling, experimental characterization, manufacturing and application of those magnetic hybrid materials.
This volume discusses the role of MOFs in removal of pharmaceutical pollutants. Metal-organic frameworks (MOFs) are advanced porous materials and are promising adsorbents with facile modifications, high specific surface area, controllable porosity, and tailored surface properties. Pharmaceutical pollution is an issue of concern due to its effects on environment. Recently, researchers have designed MOFs for use in remediation.
This book provides an up-to-date overview on the membrane technology for the drinking water treatment. The applications of PVDF-TiO2 nanowire hybrid ultrafiltration membrane, nanofiltration membrane, forward osmosis membrane, etc. in water treatment are discussed in detail. With abundant practical examples, the book is an essential reference for scientists, students and engineers in municipal engineering, environmental engineering, chemical engineering, environmental chemistry and material science.
This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coatings); Properties of Nonferrous Heat-Resistant Materials (Ti and Ti alloys, refractory metals and alloys, Ni-Cr and Ni-ThO2 alloys, Intermetallics, ceramics, cermets, cemented carbides, and C-C composites); Special Topics (including creep-rupture sata assessment and use, thermal and thermomechanical fatigue, elevated-temperature crack growth, creep fatigue interaction and design for high-temperature applications and oxidation).
Comprehensive and practical, Pavement Asset Management provides an essential resource for educators, students and those in public agencies and consultancies who are directly responsible for managing road and airport pavements. The book is comprehensive in the integration of activities that go into having safe and cost-effective pavements using the best technologies and management processes available. This is accomplished in seven major parts, and 42 component chapters, ranging from the evolution of pavement management to date requirements to determining needs and priority programming of rehabilitation and maintenance, followed by structural design and economic analysis, implementation of pavement management systems, basic features of working systems and finally by a part on looking ahead. The most current methodologies and practical applications of managing pavements are described in this one-of-a-kind book. Real world up-to-date examples are provided, as well as an extensive list of references for each part.
Based on "The Virtual Conference on Chemistry and its Applications (VCCA-2020) - Research and Innovations in Chemical Sciences: Paving the Way Forward" held in August 2020 and organized by the Computational Chemistry Group of the University of Mauritius. The chapters reflect a wide range of fundamental and applied research in the chemical sciences and interdisciplinary subjects.
With the fast pace of developments in quantum technologies, it is more than ever necessary to make the new generation of students in science and engineering familiar with the key ideas behind such disruptive systems. This book intends to fill such a gap between experts and non-experts in the field by providing the reader with the basic tools needed to understand the latest developments in quantum communications and its future directions. This is not only to expand the audience knowledge but also to attract new talents to this flourishing field. To that end, the book as a whole does not delve into much detail and most often suffices to provide some insight into the problem in hand. The primary users of the book will then be students in science and engineering in their final year of undergraduate studies or early years of their post-graduate programmes.
Theoretical and practical interests in additive manufacturing (3D printing) are growing rapidly. Engineers and engineering companies now use 3D printing to make prototypes of products before going for full production. In an educational setting faculty, researchers, and students leverage 3D printing to enhance project-related products. Additive Manufacturing Handbook focuses on product design for the defense industry, which affects virtually every other industry. Thus, the handbook provides a wide range of benefits to all segments of business, industry, and government. Manufacturing has undergone a major advancement and technology shift in recent years. |
You may like...
Materials for Sustainable Energy, Volume…
Rudi van Eldik, Wojciech Macyk
Hardcover
R5,887
Discovery Miles 58 870
Definitions of Biomaterials for the…
Xingdong Zhang, David Williams
Paperback
R2,164
Discovery Miles 21 640
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
|