Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science
This new edition includes brand-new developments in the modeling of processes in the column apparatuses. It analyzes the radial velocity component and axial variation in the axial velocity in the column. These models are described in five new chapters. The book presents models of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze a broad range of processes (simple and complex chemical reactions, physical and chemical absorption, physical and chemical adsorption, catalytic reactions in the cases of physical and chemical adsorption mechanism), and make it possible to model sulfur dioxide gas purification processes.
This book presents studies on the plasticity, failure, and damage behavior of materials and structures under monotonic and cyclic loads. Featuring contributions by leading authors from around the globe, it focuses on the description of new effects observed in experiments, such as damage under cyclic loading. It also proposes various simulation models based on different approaches and compares them with tests, taking scaling aspects into account.
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
This book focuses on the synthesis of lower-mobility parallel manipulators, presenting a group-theory-based method that has the advantage of being geometrically intrinsic. Rotations and translations of a rigid body as well as a combination of the two can be expressed and handled elegantly using the group algebraic structure of the set of rigid-body displacements. The book gathers the authors' research results, which were previously scattered in various journals and conference proceedings, presenting them in a unified form. Using the presented method, it reveals numerous novel architectures of lower-mobility parallel manipulators, which are of interest to those in the robotics community. More importantly, readers can use the method and tool to develop new types of lower-mobility parallel manipulators independently.
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors
The book covers various topics of heat transfer. It explains and analyzes several techniques and modes of heat transfer such as conduction in stationary media, convection in moving media and also by radiation. It is primarily a text book useful for undergraduate and postgraduate students. The book should also interest practicing engineers who wish to refresh their knowledge in the field. The book presents the various topics in a systematic way starting from first principles. The topics are developed to a fairly advanced level towards the end of each chapter. Several worked examples illustrate the engineering applications of the basic modeling tools developed in the text. The exercises at the end of the book are arranged chapter wise and challenge the reader to tackle typical real-life problems in heat transfer. This book will be of potential use for students of mechanical engineering, chemical engineering and metallurgy in most engineering colleges.
Written by a team of experts that has been working together for several years in the context of a research network involving international institutions, this book brings several applications related to smart material systems such as vibration and noise control, structural health monitoring, energy harvesting and shape memory alloys. Furthermore, this book also provides basic knowledge on the fundamentals of smart material systems and structures. Consequently, the present title serves as an important resource for advanced undergraduate and graduate students. In addition, it serves as a guide for engineers and scientists working with smart structures and materials both with an application and basic research perspective. Smart material systems and structures represent a new paradigm which is increasing the capabilities of engineering systems. Adaptability and versatility are some important aspects related to such systems. In brief, research on smart materials is characterized by synergistically combining different physical features, such as mechanical, electrical, chemical, and magnetic. As a result, smart material technologies have a huge potential to enhance the performance of engineering structures opening unlimited opportunities to innovation and economic benefits.
This book highlights the positive and negative impacts that hemp fibre and textiles have on environment, while studying the effects of climate change on the growth of fibre hemp. Human-induced climate change challenge the availability of textile fibres, whereas today's apparel industry leaves behind a substantial environmental footprint. Sustainable hemp textiles can lighten it. The book describes the environmental impact of hemp and how climate change influences future hemp growth. Hemp is considered in most literature as a sustainable alternative for the commonly used fibres polyester and cotton. However, most research does not go farther than the environmental impacts of hemp, and there is currently a lack of knowledge/literature that examines the possibilities of hemp growth under changing climate conditions.
This thesis demonstrates the first use of high-speed ultrasound imaging to non-invasively probe how the interior of a dense suspension responds to impact. Suspensions of small solid particles in a simple liquid can generate a rich set of dynamic phenomena that are of fundamental scientific interest because they do not conform to the typical behavior expected of either solids or liquids. Most remarkable is the highly counter-intuitive ability of concentrated suspensions to strongly thicken and even solidify when sheared or impacted. The understanding of the mechanism driving this solidification is, however, still limited, especially for the important transient stage while the response develops as a function of time. In this thesis, high-speed ultrasound imaging is introduced to track, for the first time, the transition from the flowing to the solidified state and directly observe the shock-like shear fronts that accompany this transition. A model is developed that agrees quantitatively with the experimental measurements. The combination of imaging techniques, experimental design, and modeling in this thesis represents a major breakthrough for the understanding of the dynamic response of dense suspensions, with important implications for a wide range of applications ranging from the handling of slurries to additive manufacturing.
This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quality or to furnish a protective layer. Accordingly, sections on laser treatment, shot peening and the production of protective layers round out the book's coverage.
This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions. The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts. The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited. The central part of the book is the discussion of extremely floppy molecules, which are not describable in the framework of traditional theories. The book introduces a fundamentally new approach to describing the molecular dynamics of these molecules - the super-rotor model, which is based on a five-dimensional symmetry that has never been observed in molecules before. By applying the super-rotor theory to the prototype of floppy molecules, protonated methane, this model can consistently predict the symmetry and energy of low-energy states, which were characterized experimentally only a few years ago. The theoretical predictions agree with the experimental results, which makes the prospect of further developing the super-rotor theory and applying it to other molecules a promising one. In the final section, the book also covers the topic of ultrafast rotations, where usual quantum calculations reach their natural limits. A semi-classical method for determining rotational energies, developed in the early 1990s, is shown to be attachable to quantum calculations of the vibrational states. This new combined method is suitable for efficiently calculating ro-vibrational energies, even for molecular states with large angular momentum.
This book provides comprehensive mechanobiological insights into bone, including the microstructure of cancellous bone and its realistic loading in the human body. This approach considers different types of loads, i.e. static and dynamic, and the response under uniaxial and multiaxial loading conditions. The book also reviews additional factors influencing biomechanical properties, e.g. fluid transport. In closing, the mechanobiological approach is discussed in the context of the finite element method.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This first volume covers the following main topics: Active Components and Vibration Control; Balancing; Bearings: Fluid Film Bearings, Magnetic Bearings, Rolling Bearings and Seals; and Blades, Bladed Systems and Impellers.
This work focuses on the fundamentals of MMCs for engineers and designers. The new edition addresses new issues and developments in the areas of automotive, aerospace, electronics and consumer applications. These include continuous fiber reinforced MMCs for cables in power transmission, high temperature superconducting wires, particulate MMCs in civilian aircraft and automotive applications, and high volume fraction, high thermal conductivity substrates for electronic packaging. The coverage is thorough and cohesive, and emphasizes the synergistic relationships among processing, structure and properties of metal matrix composites.
The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to over constrained. The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.
This volume includes contributions presented at the Fifth IFToMM Symposium on the History of Machines and Mechanisms, held at Universidad Autonoma de Queretaro, Santiago de Queretaro, QRO, Mexico, in June 2016. It contains work on theories and facts concerning mechanisms and machines from antiquity to current times as viewed in the present day. Topics include modern reviews of past works; people, history, and their works; direct memories of the recent past; historic development theories; the history of the design of machines and mechanisms; developments of mechanical design and automation; the historic development of teaching; the history of schools of engineering and the education of engineers.
The book includes high-quality papers presented at the 4th International Conference on Smart Learning Ecosystems and Regional Development at Universita Roma Tor Vergata, Italy, from 22 to 24 May, 2019. Providing insights into the relevance of smart learning ecosystems (schools, campuses, the workplace, informal learning contexts, etc.) for regional development and social innovation, it also discusses how citizens' involvement with smart ecosystems can be increased and made more effective.
This book discusses the thermal-elastic mechanics problems of concrete rectangular thin plate. Using theoretical derivation combined with numerical examples, it explains in detail the analytical solution of the deflection, bending moment, thermal vibration and thermal buckling of concrete rectangular thin plate. To facilitate application, the book also includes deflection and bending moment calculation tables of concrete rectangular thin plate with four edges supported and with free boundary conditions.
Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron's electric charge. This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures. Part One of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics.
This is the first book to systematically review and summarize the recent rapid advances and varied results of multiphysics in nanoscale materials including elastic strain engineering. This book comprises topics on remarkable properties of multiphysics in low-dimensional nanoscale components from first-principles density-functional theory (or tight binding) calculations, which are essential for the nonlinear multiphysics couplings due to quantum mechanical effects. This volume provides a clear point of view and insight into the varied work done in diverse fields and disciplines and promotes a fundamental to state-of-the-art understanding of properties of multiphysics. Because the novelty and complexity of mechanical and multiphysical properties of low-dimensional nanostructures originate from combinations of outer shapes (e.g., films, wires, tubes, and dots) and inner understructures (e.g., grain boundaries, domain walls, vacancies, and impurities), the nanostructures are classified into fundamental elements, and the properties of each element and their interplay are reviewed for systematic, in-depth understanding. This book points out a new direction for multiphysics in nanostructures, which opens the door both to exploiting and to designing novel functionalities at the nanoscale. Readers will be interested in this rapidly expanding multidisciplinary work and will be motivated to enter this promising research area.
Composed of papers presented at the 10th conference on Multiphase flow this book presents the latest research on the subject. The research included in this volume focuses on using synergies between experimental and computational techniques to gain a better understanding of all classes of multiphase and complex flow. The presented papers illustrate the close interaction between numerical modellers and researchers working to gradually resolve the many outstanding issues in our understanding of multiphase flow. Recently multiphase fluid dynamics have generated a great deal of attention, leading to many notable advances in experimental, analytical and numerical studies. Progress in numerical methods has permitted the solution of many practical problems, helping to improve our understanding of the physics involved. Multiphase flows are found in all areas of technology and the range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. The papers in the book cover a number of topics, including: Experimental measurements; Numerical methods; Multiphase flows and Flow in porous media.
This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.
This book introduces a variety of basic sciences and applications of the nanocomposites and heterostructures of functional oxides. The presence of a high density of interfaces and the differences in their natures are described by the authors. Both nanocomposites and heterostructures are detailed in depth by researchers from each of the research areas in order to compare their similarities and differences. A new interfacial material of heterostructure of strongly correlated electron systems is introduced. |
You may like...
Solving Problems in Fluid Mechanics…
J.F. Douglas, R D Matthews
Paperback
R2,377
Discovery Miles 23 770
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
The Science and Technology of Silicones…
Stephen J. Clarson, John J Fitzgerald, …
Hardcover
R2,525
Discovery Miles 25 250
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
Scanning Probe Microscopy of Soft Matter…
V.V. Tsukruk
Hardcover
|