Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science
This monograph deals with the mechanics and thermodynamics of materials with memory, including properties of the dynamical equations that describe their evolution in time under varying loads. A work in four parts, the first is an introduction to continuum mechanics, including classical fluid mechanics, linear and non-linear elasticity. The second part considers continuum thermodynamics and its use to derive constitutive equations of materials with memory, including viscoelastic solids, fluids, heat conductors and some examples of non-simple materials. In the third part, free energies for materials with linear memory constitutive relations are discussed. The concept of a minimal state is introduced. Explicit formulae are presented for the minimum and related free energies. The final part deals with existence, uniqueness, and stability results for the integrodifferential equations describing the dynamical evolution of viscoelastic materials, including a new approach based on minimal states rather than histories. There are also chapters on the controllability of thermoelastic systems with memory, the Saint-Venant problem for viscoelastic materials and on the theory of inverse problems. The second edition includes a new chapter on thermoelectromagnetism as well as recent findings on minimal states and free energies. It considers the case of minimum free energies for non-simple materials and dielectrics, together with an introduction to fractional derivative models.
The papers in this collection cover a diverse range of topics on the topic of fatigue of materials. The editors have grouped the papers into five sections. Sections 1 and 2 contain papers that (i) review the current state of knowledge both related and relevant to the subject of fatigue behavior of materials, and (ii) present new, innovative, and emerging techniques for experimental evaluation of the fatigue behavior. Sections 3 and 4 focus on advanced materials that are used in performance-critical applications in the aerospace and automotive industries, such as the alloys of titanium, nickel, aluminum, and magnesium. Section 5 presents papers relating to other materials of engineering interest, such as iron and steel, polymer, rubber, and composites.
Material processing techniques that employ severe plastic deformation have evolved over the past decade, producing metals, alloys and composites having extraordinary properties. Variants of SPD methods are now capable of creating monolithic materials with submicron and nanocrystalline grain sizes. The resulting novel properties of these materials has led to a growing scientific and commercial interest in them. They offer the promise of bulk nanocrystalline materials for structural applications, including nanocomposites of lightweight alloys with unprecedented strength. These materials may also enable the use of alternative metal shaping processes, such as high strain rate superplastic forming. Prospective applications for medical, automotive, aerospace and other industries are already under development.
This book introduces the concept, design and application of green biocomposites, with a specific focus on the current demand for green biocomposites for automotive and aerospace components. It discusses the mathematical background, innovative approaches to physical modelling, analysis and design techniques. Including numerous illustrations, tables, case studies and exercises, the text summarises current research in the field. It is a valuable reference resource for researchers, students and scientists working in the field of materials science.
The present book gathers a large amount of the recent research results on this topic to provide a better understanding of the size effect by giving a quantitative description of the relationship between the properties of engineering concrete-making material (e.g. the nominal strength) and the corresponding structure size. To be precise, this is about to explore the new static and dynamic unified size effect laws for concrete materials, as well as size effect laws for concrete components. Besides presenting clear and accurate descriptions that further deepen our fundamental knowledge, this book provides additionally useful tools for the scientific design of concrete structures in practical engineering applications.
This application-oriented book introduces readers to the associations and relationships between contact mechanics and friction, providing them with a deeper understanding of tribology. It addresses the related phenomena of contacts, adhesion, capillary forces, friction, lubrication, and wear from a consistent point of view. The author presents (1) methods for rough estimates of tribological quantities, (2) simple and general methods for analytical calculations, and (3) the crossover into numerical simulation methods, the goal being to convey a consistent view of tribological processes at various scales of magnitude (from nanotribology to earthquake research). The book also explores the system dynamic aspects of tribological systems, such as squeal and its suppression, as well as other types of instabilities and spatial patterns. It includes problems and worked-out solutions for the respective chapters, giving readers ample opportunity to apply the theory to practical situations and to deepen their understanding of the material discussed. The second edition has been extended with a more detailed exposition of elastohydrodynamic lubrication, an updated chapter on numerical simulation methods in contact mechanics, a new section on fretting in the chapter on wear, as well as numerous new exercises and examples, which help to make the book an excellent reference guide.
Biocidal polymers are designed to inhibit or kill microorganisms such as bacteria, fungi and protozoans. This book summarizes recent findings in the synthesis, modification and characterization of various antimicrobial polymers ranging from plastics and elastomers to biomimetic and biodegradable polymers. Modifications with different antimicrobial agents as well as antimicrobial testing methods are described in a comprehensive manner.
These proceedings gather outstanding papers presented at the China SAE Congress 2019. Featuring contributions mainly from China, the biggest carmaker as well as most dynamic car market in the world, the book covers a wide range of automotive topics and the latest technical advances in the industry. Many of the approaches included can help technicians to solve practical problems that affect their daily work. In addition, the book offers valuable technical support to engineers, researchers and postgraduate students in the field of automotive engineering.
This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first chapters a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The manner of presentation used throughout the textbook is adapted for ease of access of readers with education in natural and technical sciences.
The book presents a series of concise papers by researchers specialized in various fields of continuum and computational mechanics and of material science. The focus is on principles and strategies for multiscale modeling and simulation of complex heterogeneous materials, with periodic or random microstructure, subjected to various types of mechanical, thermal, chemical loadings and environmental effects. A wide overview of complex behavior of materials (plasticity, damage, fracture, growth, etc.) is provided. Among various approaches, attention is given to advanced non-classical continua modeling which, provided by constitutive characterization for the internal and external actions (in particular boundary conditions), is a very powerful frame for the gross mechanical description of complex material behaviors, able to circumvent the restrictions of classical coarse-graining multiscale approaches.
< b=""> The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
This book discusses the mechanisms of electric conductivity in various ionic liquid systems (protic, aprotic as well as polymerized ionic liquids). It hence covers the electric properties of ionic liquids and their macromolecular counterpanes, some of the most promising materials for the development of safe electrolytes in modern electrochemical energy devices such as batteries, super-capacitors, fuel cells and dye-sensitized solar cells. Chapter contributions by the experts in the field discuss important findings obtained using broadband dielectric spectroscopy (BDS) and other complementary techniques. The book is an excellent introduction for readers who are new to the field of dielectric properties of ionic conductors, and a helpful guide for every scientist who wants to investigate the interplay between molecular structure and dynamics in ionic conductors by means of dielectric spectroscopy.
This collection honoring Professor Jiann-Yang Hwang focuses on characterization and processing development in minerals, metals, and materials. Topics include but are not limited to:* Characterization methodology of minerals, metals, and materials * Microwave-assisted material processes * Recycling and reuse of metallurgical byproducts * Materials for hydrogen storage * Wastewater treatment and environmental protection * Natural materials for value-added applications * Principles and interactions of material characterization and manufacturing processing
This book presents the most recent advances in the research of machines and mechanisms. It collects 54 reviewed papers presented at the XII International Conference on the Theory of Machines and mechanisms (TMM 2016) held in Liberec, Czech Republic, September 6-8, 2016. This volume offers an international selection of the most important new results and developments, grouped in six different parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, linkages and cams, robots and manipulators, dynamics of machines and mechanisms, rotor dynamics, computational mechanics, vibration and noise in machines, optimization of mechanisms and machines, mechanisms of textile machines, mechatronics to the control and monitoring systems of machines. This conference is traditionally organised every four year under the auspices of the international organisation IFToMM and the Czech Society for Mechanics.
This collection focuses on all aspects of science and technology related to friction stir welding and processing.
Contents - PREFACE TO THE SECOND EDITION - PREFACE TO THE FIRST EDITION - INTRODUCTION - ABBREVIATIONS - 1. NATURAL WAXES - Mineral Waxes: Paraffin Wax; Microcrystalline Waxes; Petrolatum Wax; Ozokerite; Ceresin; Utah Wax; Montan Wax - Vegetable Waxes: Botanical Origin of Waxes - Solubility of Vegetable Waxes - Carnauba Wax - Flower Wax - First Wax - Medium Wax - Sandy Wax - Fat Wax - Candelilla Wax - Japan Wax - Ucuhuba Wax - 2. MANUFACTURED AND SYNTHETIC WAXES - Fatty Alcohols: Cetyl Alcohol; Lanette Wax; Technical Stearyl Alcohol - Fatty Acids: Stearic Acid; Palmitic Acid; Myristic Acid; Distilled Fatty Acids; Solubility of Fatty Acids - Polyglycols: Carbowaxes - Polyhydric Alcohol Fatty Acid Esters: Glyceryl Stearates - Glycol Fatty-Acid Esters - Sorbitol Stearates - Pentawaxes - Hydrogenated Oils: Opalwax - Chlorinated Naphthalenes: Halowax; Seekay Wax - Acrawaxes: Acrawax B; Acrawax C. - I. G. Waxes - Miscellaneous Synthetic Waxes - COMMERCIAL WAXES - Albacer - Diolin- Flexo Wax - C-Glyco Waxes- Stroba Wax - Ketones, Amines, Amides, and Nitriles- 16-Hentriacontanone - Octadecyl-Hexadecyl Amine - Octadecylamine- Armids- Octadecanamide-Hexadecanamide - Octadecane Nitrile-Octadecane-Hexadecane Nitrile - Santowaxes - Santowax R - Alcowaxes - Alcowax-M - Alcowax-G - 3. PHYSICAL PROPERTIES OF WAXES AND WAX COMPOSITIONS - Increasing the Viscosity of Molten Waxes - Penetration - Surface Tension of Waxes - Adhesiveness - Increasing Compatibility - Raising the Melting Point of Waxes: Raising the Melting Point of Petrolatum - Effects of a Wax Sizing on the Moisture Absorption of Insulating Board - Pliolite-Paraffin Wax Compositions - Specific Heat of Petroleum Waxes - Melting Points of Binary Wax Mixtures - Solubility of Waxes: Solubility of Waxes in Different Solvents - Compatibility of Paraffin Waxes with Other Substances - Compatibility of Mixed Fatty Acids - Compounded Waxes - 4. WAX TECHNOLOGY - Adulteration - Quality Variations Simple Tests: Melting Point - Specific Gravity - Moisture and Insoluble Matter - Accurate Determination of Specific Gravity: Preparation of Sample - Determination of Specific Gravity at 25/25 C - Identification of Mixed Waxes: Schematic Outline for Identification - Separation and Comparison of the Properties of the Wax Components - Spermaceti - Beeswax - Carnauba Wax - Candelilla Wax - Montan Wax - Paraffin Wax - Ozokerite - 5. WAXES IN INDUSTRY - Dental Waxes: Method of Producing Base-Plate Wax - Lipsticks - Pharmaceutical Preparations - Embalming Preparations - Pyrotechnics - Candles: Wicks- Winding- Candle Sizes - Machinery - Wax Candles - Paraffin Candles - Temperature Control-Colors, Sizes, and Shapes - Standard Candle - Melting Point of Wax Mixtures - Congealing Point of Candles - Leather Finishes - Paper Finishes - Waterproofing Kraft Papers - Evaluation of Waxes for Paper Board: Stain and Flow Test at 130 F - Softening and Melting Point - Flexibility and Strength - Viscosity - Surface Tension - Permeability - Degree of Impregnation - Effect of Wax on the Strength of Board - Electrolyte Penetration Test - 6. GLOSSARY - SPECIAL TABLES AND SUBSTITUTES 7. WAX FORMULARY - Adhesives and Cements - Agricultural and Garden Specialties - Building Materials- Carbon Paper, Inks, and Crayons - Cosmetics and Medicinal Preparations - Dental Preparations - Emulsions - Full TOC available on Website
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book primarily covers recent research, theories, and practices relevant to surface engineering and processing of materials. It focuses on the lesser-known technologies and advanced manufacturing methods which may not be standardized yet but are highly beneficial to material and manufacturing industrial engineers. The book includes current advances in the field of coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies which enhance the performance of materials in terms of corrosion, wear and fatigue. The book can be a valuable reference for beginners, researchers, and professionals interested in materials processing and allied fields.
This book discusses basic thermodynamic behaviors and 'abnormal' properties from a thermo-physical perspective, and explores basic heat transfer and flow properties, the latest findings on their physical aspects and indications, chemical engineering properties, microscale phenomena, as well as transient behaviors in fast and critical environments. It also presents the most and challenging problems and the outlook for applications and innovations of supercritical fluids.
This book presents basic research on delta operator systems (DOS) with actuator saturation. It proposes null controllable regions of delta operator systems, introduces the enlarging of the domain of attraction and analyzes the performance of DOSs subject to actuator saturation. It also discusses the domain of attraction on different systems in delta domain, and investigates the applications in complicated systems using delta operator approaches.
This book provides an outline of theoretical concepts and their experimental verification in studies of self-organization phenomena in chemical systems, as they emerged in the mid-20th century and have evolved since. Presenting essays on selected topics, it was prepared by authors who have made profound contributions to the field. Traditionally, physical chemistry has been concerned with interactions between atoms and molecules that produce a variety of equilibrium structures - or the 'dead' order - in a stationary state. But biological cells exhibit a different 'living' kind of order, prompting E. Schroedinger to pose his famous question "What is life?" in 1943. Through an unprecedented theoretical and experimental development, it was later revealed that biological self-organization phenomena are in complete agreement with the laws of physics, once they are applied to a special class of thermodynamically open systems and non-equilibrium states. This knowledge has in turn led to the design and synthesis of simple inorganic systems capable of self-organization effects. These artificial 'living organisms' are able to operate on macroscopic to microscopic scales, even down to single-molecule machines. In the future, such research could provide a basis for a technological breakthrough, comparable in its impact with the invention of lasers and semiconductors. Its results can be used to control natural chemical processes, and to design artificial complex chemical processes with various functionalities. The book offers an extensive discussion of the history of research on complex chemical systems and its future prospects.
This book provides a review of the latest advances in anion exchange membrane fuel cells. Starting with an introduction to the field, it then examines the chemistry and catalysis involved in this energy technology. It also includes an introduction to the mathematical modelling of these fuel cells before discussing the system design and performance of real-world systems. Anion exchange membrane fuel cells are an emerging energy technology that has the potential to overcome many of the obstacles of proton exchange membrane fuel cells in terms of the cost, stability, and durability of materials. The book is an essential reference resource for professionals, researchers, and policymakers around the globe working in academia, industry, and government.
This thesis develops several systematic and unified approaches for analyzing dynamic systems with positive characteristics or a more general cone invariance property. Based on these analysis results, it uses linear programming tools to address static output feedback synthesis problems with a focus on optimal gain performances. Owing to their low computational complexity, the established controller design algorithms are applicable for large-scale systems. The theory and control strategies developed will not only be useful in handling large-scale positive delay systems with improved solvability and at lower cost, but also further our understanding of the system characteristics in other related areas, such as distributed coordination of networked multi-agent systems, formation control of multiple robots.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "Polymeric Nanoparticle-Mediated Gene Delivery for Lung Cancer Treatment" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. |
You may like...
Perovskites and Related Mixed Oxides…
Pascal Granger, Vasile I. Parvulescu, …
Hardcover
Frontiers of Plasmon Enhanced…
Yukihiro Ozaki, George C. Schatz, …
Hardcover
R4,789
Discovery Miles 47 890
Biobased Monomers, Polymers, and…
Patrick B. Smith, Richard B. Gross
Hardcover
R5,420
Discovery Miles 54 200
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,424
Discovery Miles 54 240
|