Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science
This book broadens the knowledge of tribology. This book is evolved out of current research trends on tribological performance of systems related to nano tribology, rheology, engines, polymer brushes, composite materials, erosive wear and lubrication. The book deals with enhancing the ideas on tribological properties, the different types of wear phenomenon and lubrication enhancement. Further, the tribological performance of systems, whether nano, micro or macro-scale, depends upon a large number of external parameters and important among them are temperature, contact pressure and relative speed. Thus, the book focus on the theoretical aspects to industrial applications of tribology.
This work sheds new light on fundamental aspects of phase separation in polymer-blend thin films. A key feature underlying the theoretical models is the unification of one-dimensional thermodynamic phase equilibria with film evolution phenomena in two- and three dimensions. Initially, an established 'phase portrait' method, useful for visualising and calculating phase equilibria of polymer-blend films, is generalised to systems without convenient simplifying symmetries. Thermodynamic equilibria alone are then used to explain a film roughening mechanism in which laterally coexisting phases can have different depths in order to minimise free energy. The phase portraits are then utilised to demonstrate that simulations of lateral phase separation via a transient wetting layer, which conform very well with experiments, can be satisfactorily explained by 1D phase equilibria and a 'surface bifurcation' mechanism. Lastly, a novel 3D model of coupled phase separation and dewetting is developed, which demonstrates that surface roughening shadows phase separation in thin films.
This book is intended to serve as a textbook for advanced undergraduate and graduate students as well as professionals engaged in application of thermo-fluid science to the study of combustion. The relevant thermo-chemistry and thermo-physical data required for this study are provided in the 6 appendices along with appropriate curve-fit coefficients. To facilitate gradual learning, two chapters are devoted to thermodynamics of pure and gaseous mixture substances, followed by one chapter each on chemical equilibrium and chemical kinetics. This material when coupled with a dedicated chapter on understanding of equations governing transport of momentum, heat and mass in the presence of chemical reactions provides adequate grounding to undertake analysis of practical combustion equipment, of premixed and diffusion flames as well as of solid particle and liquid droplet combustion. The learnings from the aforementioned chapters are taken to a uniquely strong chapter on application case studies, some of which have special relevance for developing countries.
This book focuses on a group of new materials labeled "graphene oxides." It provides a comprehensive overview of graphene oxide-based nanomaterials in terms of their synthesis, structures, properties, and extensive applications in catalysis, separation, filtration, energy storage and conversion. The book also covers emerging research on graphite oxides and the impact of the research on fundamental and applied sciences.
This book discusses microstructure-property correlations and explores key microstructure features and how they affect the properties of a material. The authors discuss the effect of manufacturing and processing routes on microstructure and properties. They identify appropriate microstructure and mechanical characterization techniques essential for developing accurate microstructure-property relationships. The techniques include high resolution imaging methods and properties measurements such as hardness, strength, elastic modulus, and fracture toughness. Current and future trends in hard and superhard material design are revealed by the authors, including nanostructured materials, biomimicry, and novel manufacturing technologies.
This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.
This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.
This book offers valuable insights and provides effective tools useful for imagining, creating, and promoting novel and challenging developments in structural mechanics. It addresses a wide range of topics, such as mechanics and geotechnics, vibration and damping, damage and friction, experimental methods, and advanced structural materials. It also discusses analytical, experimental and numerical findings, focusing on theoretical and practical issues and innovations in the field. Collecting some of the latest results from the Lagrange Laboratory, a European scientific research group, mainly consisting of Italian and French engineers, mechanicians and mathematicians, the book presents the most recent example of the long-term scientific cooperation between well-established French and Italian Mechanics, Mathematics and Engineering Schools. It is a valuable resource for postgraduate students, researchers and practitioners dealing with theoretical and practical issues in structural engineering.
In this thesis, the author investigates experimentally and numericallythe fracture behavior of an electron beam welded joint made fromtwo butt S355 plates. The 2D Rousselier model, the Gurson-Tvergaard-Needleman (GTN) model and the cohesive zone model (CZM) wereadopted to predict the crack propagation of thick compact tension (CT)specimens. Advantages and disadvantages of the three mentioned modelsare discussed. The cohesive zone model is suggested as it is easy to usefor scientists & engineers because the CZM has less model parametersand can be used to simulate arbitrary crack propagation. The resultsshown in this thesis help to evaluate the fracture behavior of a metallicmaterial. A 3D optical deformation measurement system (ARAMIS) andthe synchrotron radiation-computed laminography (SRCL) techniquereveal for the first time the damage evolution on the surface of the sampleand inside a thin sheet specimen obtained from steel S355. Damageevolution by void initiation, growth and coalescence are visualized in2D and 3D laminographic images. Two fracture types, i.e., a flat crackpropagation originated from void initiation, growth and coalescenceand a shear coalescence mechanism are visualized in 2D and 3D imagesof laminographic data, showing the complexity of real fracture. Inthe dissertation, the 3D Rousselier model is applied for the first timesuccessfully to predict different microcrack shapes before shear cracksarise by defining the finite elements in front of the initial notch withinhomogeneous f0-values. The influence of the distribution of inclusionson the fracture shape is also discussed. For the analyzed material, ahomogeneous distribution of particles in the material provides thehighest resistance to fracture.
This book presents important developments in green chemistry, with a particular focus on composite materials chemistry. In recent years, natural polymers have generated much interest due to their unique morphology and physical properties. The book gives an introductory overview of green composites, and discusses their emerging interdisciplinary applications in various contemporary fields. The chapters, written by leading experts from industry and academia, cover different aspects of biodegradable green composites and natural polymers including their processing, manufacturing, properties, and applications. This book will be a valuable reference for beginners, researchers as well as industry professionals interested in biodegradable composites.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
Membrane techniques provide a broad science and technology base.
Although there are several books in the traditional membrane field,
there is a great need for a highly comprehensive book. This
refereed book covers materials from highly respected researchers.
This title is highly multidisciplinary in nature and should be
extremely valuable to scientists and engineers involved in a
variety of activities. Students and faculty members around the
world will find this title to be an excellent reference book.
Understanding how gravity loads and wind and earthquake loads flow through a building is of utmost importance to all structural engineers and architects. Paradoxically, this critical idea is practically not addressed in any textbook on the market. Meant as a companion to the author's Structures: A Geometric Approach, this textbook fills that need with qualitative techniques as well as quantitative tools that use state of the art visual representation of forces and deformations in structures. Structures: A Studio Approach reaches out to both structural engineers and designers by presenting structural engineering topics in an interdisciplinary studio environment. Using many graphical techniques, it offers a very rigorous approach, but also enables creativity. Cutting edge finite element as well as parametric modeling tools are used, and state of the art visual representations of force flow help both groups of students realize that understanding three dimensional load flow in a building is a requirement for channeling that flow in a structurally efficient and visually expressive manner. Ultimately, the reader is able to develop a unique structural sensibility; an ethos that places structural design on an equal footing with the design of program, skin, massing and site.
This book describes the development of a new analytical, full-vehicle model with nine degrees of freedom, which uses the new modified skyhook strategy (SKDT) to control the full-vehicle vibration problem. The book addresses the incorporation of road bank angle to create a zero steady-state torque requirement when designing the direct tilt control and the dynamic model of the full car model. It also highlights the potential of the SKDT suspension system to improve cornering performance and paves the way for future work on the vehicle's integrated chassis control system. Active tilting technology to improve vehicle cornering is the focus of numerous ongoing research projects, but these don't consider the effect of road bank angle in the control system design or in the dynamic model of the tilting standard passenger vehicles. The non-incorporation of road bank angle creates a non-zero steady state torque requirement.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This second volume covers the following main topics: condition monitoring, fault diagnostics and prognostics; modal testing and identification; parametric and self-excitation in rotor dynamics; uncertainties, reliability and life predictions of rotating machinery; and torsional vibrations and geared systems dynamics.
The book encodes a vision for the actively sustainable management and development of the built environment by referring to the application of timber-based construction systems as additive solutions for the multi-purpose improvement of existing buildings. It translates this vision into an innovative methodology for the management of the entire building process - from design to production, operation, and maintenance - and the assessment of timber-based construction performances across the whole building life-cycle. This approach is based on a multi-dimensional analysis, which starts from the structure of the Active House (AH) protocol, improved through information-integrated digital environments and multi-criteria evaluation methods, such as BIM and Design Optioneering. During the design stage, indeed, it analyzes and compares different design choices, according to the DO method, until the definition and validation of the "As-Built" step, while in the operational phase, it refers to sensors-retrieved data to show the evolution of the building behaviour, accounting for real users' interaction, building performances decay and needs of maintenance, defining the digital twin of the building: a real Cognitive Building. Finally, the application of this methodology identifies innovative models of processes, products, and design of wood-based construction technologies, suitable to satisfy the needs of the 2D/3D construction layering for the sustainable transformation of the built environment.
This book introduces novel methods for leak and blockage detection in pipelines. The leak happens as a result of ageing pipelines or extreme pressure forced by operational error or valve rapid variation. Many factors influence blockage formation in pipes like wax deposition that leads to the formation and eventual growth of solid layers and deposition of suspended solid particles in the fluids. In this book, initially, different categories of leak detection are overviewed. Afterwards, the observability and controllability of pipeline systems are analysed. Control variables can be usually presented by pressure and flow rates at the start and end points of the pipe. Different cases are considered based on the selection of control variables to model the system. Several theorems are presented to test the observability and controllability of the system. In this book, the leakage flow in the pipelines is studied numerically to find the relationship between leakage flow and pressure difference. Removing leakage completely is almost impossible; hence, the development of a formal systematic leakage control policy is the most reliable approach to reducing leakage rates.
This volume contains studies on the evolution and function of lightweight constructions of planktonic and other organisms, and examples of how they can be used to create new solutions for radical innovations of lightweight constructions for technological application. The principles and underlying processes responsible for evolution and biodiversity of marine plankton organisms are highly relevant and largely unresolved issues in the field of marine science. Amongst the most promising objects for the study of evolution of stable lightweight constructions are marine organisms such as diatoms or radiolarians. Research in these fields requires interdisciplinary expertises such as in evolutionary modelling, paleontology, lightweight optimization, functional morphology, and marine ecology. Considerable effort and expert knowledge in production engineering or lightweight optimization is necessary to transfer knowledge on biogenic structures and evolutionary principles into new lightweight solutions. This book show methods and examples of how this can be achieved efficiently.
This volume comprises the latest developments in both fundamental science and patient-specific applications, discussing topics such as: cellular mechanics; injury biomechanics; biomechanics of heart and vascular system; medical image analysis; and both patient-specific fluid dynamics and solid mechanics simulations. With contributions from researchers world-wide, the Computational Biomechanics for Medicine series of titles provides an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements.
This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions. Jinkui Tang is a professor at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Peng Zhang is currently pursuing his PhD at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, with a specific focus on the molecular magnetism of lanthanide compounds under the supervision of Prof. Jinkui Tang.
This books presents a current look at friction stir welding technology from application to characterization and from modeling to R&D. It is a compilation of the recent progress relating to friction stir technologies including derivative technologies, high-temperature applications, industrial applications, dissimilar alloy/materials, lightweight alloys, simulation, and characterization. With contributions from leaders and experts in industry and academia, this will be a comprehensive source for the field of Friction Stir Welding and Processing.
This book includes advanced materials and nanocomposites based on
silica and layered silicates obtained from resources in China.
Using nanotechnology, these inorganic materials can be filled,
in-situ polymerised and combined with polymers with nanoscale
dispersions. In this book, many practical examples are presented to
show how to prepare the nanocomposites.
The importance of the nanoscale effects has been recognized in
materials research for over fifty years, but it is only recently
that advanced characterization and fabrication methods are enabling
scientists to build structures atom-by-atom or molecule-by
molecule. The understanding and control of the nanostructure has
been, to a large extent, made possible by new atomistic analysis
and characterization methods pioneered by transmission electron
microscopy. "Nano and Microstructural Design of Advanced Materials"
focuses on the effective use of such advanced analysis and
characterization techniques in the design of materials.
This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology-property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science. |
You may like...
Biobased Monomers, Polymers, and…
Patrick B. Smith, Richard B. Gross
Hardcover
R5,420
Discovery Miles 54 200
Scientific Basis for Nuclear Waste…
Lara Duro, Javier Gimenez, …
Hardcover
R1,966
Discovery Miles 19 660
Intelligent Materials for Controlled…
Steven M Dinh, John DeNuzzio, …
Hardcover
R2,292
Discovery Miles 22 920
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,424
Discovery Miles 54 240
Sustainable Nanotechnology and the…
Najm Shamim, Virender K. Sharma
Hardcover
R5,423
Discovery Miles 54 230
State-Of-The-Art Developments in…
Rozaliya Barabash, Liane G. Benning, …
Hardcover
R2,330
Discovery Miles 23 300
|