![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science
Joint RES and Distribution Network Expansion Planning Under a Demand Response Framework explains the implementation of the algorithms needed for joint expansion planning of distributed generation and distribution network models, discussing how to expand the generation and distribution network by adding renewable generation, demand response, storage units, and new assets (lines and substations) so that the current and future energy supply in islands is served at a minimum cost, and with quality requirements. This book discusses the outcomes of the models discussed, including factors such as the location and size of new generation assets to be installed. It also introduces other issues relevant to the planning of insular distribution systems, including DR and hybrid storage. DR and ESS will play a much more significant role in future expansion planning models, where the present study stresses their relevance, including additional considerations to the planning model.
A Comprehensive Database of Tests on Axially Loaded Driven Piles in Sands reviews the critical need to develop better load-test databases for piles driven in sands. The key quality parameters, population of current entries and reporting formats are described before offering preliminary results obtained from comparisons between axial capacities calculated by various predictive approaches and site measurements. This book also shows that the "simplified" and "offshore" ICP and UWA variants proposed by some practitioners are over-conservative and that their use could be discontinued. The new pile capacity and stiffness database offers a broad scope for evaluating potential prediction biases relating to a wide range of soil and pile parameters. Submission of further high quality tests for inclusion in regularly updated versions is encouraged.
Marine Concrete Structures: Design, Durability and Performance comprehensively examines structures located in, under, or in close proximity to the sea. A major emphasis of the book is on the long-term performance of marine concrete structures that not only represent major infrastructure investment and provision, but are also required to operate with minimal maintenance. Chapters review the design, specification, construction, and operation of marine concrete structures, and examine their performance and durability in the marine environment. A number of case studies of significant marine concrete structures from around the world are included which help to reinforce the principles outlined in earlier chapters and provide useful background to these types of structures. The result is a thorough and up-to-date reference source that engineers, researchers, and postgraduate students in this field will find invaluable.
Friction Stir Welding of High Strength 7XXX Aluminum Alloys is the latest edition in the Friction Stir series and summarizes the research and application of friction stir welding to high strength 7XXX series alloys, exploring the past and current developments in the field. Friction stir welding has demonstrated significant benefits in terms of its potential to reduce cost and increase manufacturing efficiency of industrial products in transportation, particularly the aerospace sector. The 7XXX series aluminum alloys are the premium aluminum alloys used in aerospace. These alloys are typically not weldable by fusion techniques and considerable effort has been expended to develop friction stir welding parameters. Research in this area has shown significant benefit in terms of joint efficiency and fatigue performance as a result of friction stir welding. The book summarizes those results and includes discussion of the potential future directions for further optimization.
Qualitative Analysis of Nonsmooth Dynamics: A Simple Discrete System with Unilateral Contact and Coulomb Friction explores the effects of small and large deformations to understand how shocks, sliding, and stick phases affect the trajectories of mechanical systems. By analyzing these non-regularities successively this work explores the set of equilibria and properties of periodic solutions of elementary mechanical systems, where no classical results issued from the theory of ordinary differential equations are readily available, such as stability, continuation or approximation of solutions. The authors focus on unilateral contact in presence of Coulomb friction and show, in particular, how any regularization would greatly simplify the mathematics but lead to unacceptable physical responses.
Hydrodynamics and Transport Processes of Inverse Bubbly Flow provides the science and fundamentals behind hydrodynamic characteristics, including flow regimes, gas entrainment, pressure drop, holdup and mixing characteristics, bubble size distribution, and the interfacial area of inverse bubble flow regimes. Special attention is given to mass and heat transfer. This book is an indispensable reference for researchers in academia and industry working in chemical and biochemical engineering. Hydrodynamics and Transport Processes of Inverse Bubbly Flow helps facilitate a better understanding of the phenomena of multiphase flow systems as used in chemical and biochemical industries.
Flaws are the principal source of fracture in many materials, whether brittle or ductile, whether nearly homogeneous or composite. They are introduced during either fabrication or surface preparation or during exposure to aggressive environments (e. g. oxidation, shocks). The critical flaws act as stress concentrators and initiate cracks that propagate instantaneously to failure in the absence of crack arrest phenomena as encountered in brittle materials. This book explores those brittle materials susceptible to crack arrest and the flaws which initiate crack induced damage. A detailed description of microstructural features covering numerous brittle materials, including ceramics, glass, concrete, metals, polymers and ceramic fibers to help you develop your knowledge of material fracture. Brittle Failure and Damage of Brittle Materials and Composites outlines the technological progress in this field and the need for reliable systems with high performances to help you advance the development of new structural materials, creating advantages of low density, high resistance to elevated temperatures and aggressive environments, and good mechanical properties.
Multilayer Flexible Packaging, Second Edition, provides a thorough introduction to the manufacturing and applications of flexible plastic films, covering materials, hardware and processes, and multilayer film designs and applications. The book gives engineers and technicians a better understanding of the capability and limitations of multilayer flexible films and how to use them to make effective packaging. It includes contributions from world renowned experts and is fully updated to reflect the rapid advances made in the field since 2009, also including an entirely new chapter on the use of bio-based polymers in flexible packaging. The result is a practical, but detailed reference for polymeric flexible packaging professionals, including product developers, process engineers, and technical service representatives. The materials coverage includes detailed sections on polyethylene, polypropylene, and additives. The dies used to produce multilayer films are explored in the hardware section, and the process engineering of film manufacture is explained, with a particular focus on meeting specifications and targets. In addition, a new chapter has been added on regulations for food packaging - including both FDA and EU regulations.
This book seeks to comprehensively cover recent progress in computational fluid dynamics and nonlinear science and its applications to MHD and FHD nanofluid flow and heat transfer. The book will be a valuable reference source to researchers in various fields, including materials science, nanotechnology, mathematics, physics, information science, engineering and medicine, seeing to understand the impact of external magnetic fields on the hydrothermal behavior of nanofluids in order to solve a wide variety of theoretical and practical problems.
Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications, Second Edition, provides the latest information on this wide-band-gap semiconductor material that the body does not reject as a foreign (i.e., not organic) material and its potential to further advance biomedical applications. SiC devices offer high power densities and low energy losses, enabling lighter, more compact, and higher efficiency products for biocompatible and long-term in vivo applications, including heart stent coatings, bone implant scaffolds, neurological implants and sensors, glucose sensors, brain-machine-interface devices, smart bone implants, and organ implants. This book provides the materials and biomedical engineering communities with a seminal reference book on SiC for developing technology, and is a resource for practitioners eager to identify and implement advanced engineering solutions to their everyday medical problems for which they currently lack long-term, cost-effective solutions.
Biotransformation of Agricultural Waste and By-Products in the 4F Economy: The Food, Feed, Fiber, Fuel (4F) Economy presents an evaluation of plant species better exploitable for a particular transformation. As crops are already covering large parts of cultivable soils, is it is not conceivable to try to extend the cultures beyond the limit of available soils, but a further increase in productivity is not easy to obtain. The book discusses advances in technology and plants design which support the exploitation and valorization of vegetable and fruit by-products through fermentation (feed-batch liquid fermentation, solid-state fermentation) in bio-based bio-chemicals/biofuels production. Pathways in the biosynthesis of fibers, sugars, and metabolites are provided with a focus on the lifecycle of bacteria, yeasts, and even plant species. The text analyzes cellular structures and the organization of cell walls in order to show which polysaccharides offer more favorable fermentative processes and which are detrimental.
Nanomaterial and Polymer Membranes: Synthesis, Characterization, and Applications presents a unique collection of up-to-date polymeric nanomaterial membranes. The book offers a perfect source to document state-of-the-art developments and innovations in nanocomposite membranes, ranging from materials development and characterization of properties to membrane applications. The book discusses applications that encompass the enhancement of sorption and degradation processes and their usage for the removal of different pollutants, including heavy metals, dyes, pesticides, and other organic and inorganic pollutants from the industry.
High Temperature Oxidation and Corrosion of Metals, Second Edition, provides a high level understanding of the fundamental mechanisms of high temperature alloy oxidation. It uses this understanding to develop methods of predicting oxidation rates and the way they change with temperature, gas chemistry, and alloy composition. The book focuses on the design and selection of alloy compositions which provide optimal resistance to attack by corrosive gases, providing a rigorous treatment of the thermodynamics and kinetics underlying high temperature alloy corrosion. In addition, it emphasizes quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities, and alloy compositions. Users will find this book to be an indispensable source of information for researchers and students who are dealing with high temperature corrosion.
Insights from Imaging in Bioinorganic Chemistry continues a long-running series that describes recent advances in scientific research, in particular, in the field of inorganic chemistry. Several highly regarded experts, mostly from academe, contribute on specific topics. The series editor chooses a sub-field within inorganic chemistry as the theme and focus of the volume, extending invitations to experts for their contributions; the current theme is insights from metal ion imaging in bioinorganic and medicinal chemistry.
Basics of Engineering Turbulence introduces flow turbulence to engineers and engineering students who have a fluid dynamics background, but do not have advanced knowledge on the subject. It covers the basic characteristics of flow turbulence in terms of its many scales. The author uses a pedagogical approach to help readers better understand the fundamentals of turbulence scales, especially how they are derived through the order of magnitude analysis. This book is intended for those who have an interest in flowing fluids. It provides some background, though of limited scope, on everyday flow turbulence, especially in engineering applications. The book begins with the 'basics' of turbulence which is necessary for any reader being introduced to the subject, followed by several examples of turbulence in engineering applications. This overall approach gives readers all they need to grasp both the fundamentals of turbulence and its applications in practical instances.
Biomaterials Nanoarchitectonics, written from the perspectives of authors form NIMS and other researchers worldwide, provides readers with an explanation of the theory and techniques of nanoarchitectonics, exploring its applications in biomedical fields, including regenerative medicine, drug delivery, and diagnostic and treatment systems based on pathogenic mechanisms. The book also explains the use of nanomaterials that enable 'materials therapy', in which the materials themselves elicit a sustainable, curative effect from living tissue.
Spectroscopy of Polymer Nanocomposites covers all aspects of the spectroscopic characterization of polymer nanocomposites. More than 25 spectroscopy characterization techniques - almost all used in materials science - are treated in the book, with discussion of their potentialities and limitations. By comparing the techniques with each other and presenting the techniques together with their specific application areas, the book provides scientists and engineers the information needed for solving specific problems and choosing the right technique for analyzing the material structure. From this, the dispersion structure of fillers, property relations and filler-polymer interactions can be determined, and, ultimately, the right materials can be chosen for the right applications. Besides the techniques and structure-property relations, aspects covered include: phase segregation of filler particles, filler agglomeration and deagglomeration, filler dispersion, filler-polymer interactions, surfaces and interfaces. The book also examines recent developments, as well as unresolved issues and new challenges, in the characterization of surfaces and interfaces in polymer nanocomposites. This handpicked selection of topics, and the combined expertise of contributors from industry, academia, government and private research organizations across the globe, make this survey an outstanding reference source for anyone involved in the field of polymer nanocomposites in academia or industry.
New Materials for Catalytic Applications proposes the use of both new and existing materials for catalytic applications, such as zeolites, metal oxides, microporous and mesoporous materials, and monocrystals. In addition, metal-oxides are discussed from a new perspective, i.e. nano- and photocatalytic applications. The material presents these concepts with a new focus on strategies in synthesis, synthesis based on a rational design, the correlation between basic properties/potential applications, and new catalytic solutions for acid-base, redox, hydrogenation, photocatalytic reactions, etc.
Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance provides a detailed review of lightweight composite materials and structures and discusses their use in the transport industry, specifically surface and air transport. The book covers materials selection, the properties and performance of materials, and structures, design solutions, and manufacturing techniques. A broad range of different material classes is reviewed with emphasis on advanced materials. Chapters in the first two parts of the book consider the lightweight philosophy and current developments in manufacturing techniques for lightweight composite structures in the transport industry, with subsequent chapters in parts three to five discussing structural optimization and analysis, properties, and performance of lightweight composite structures, durability, damage tolerance and structural integrity. Final chapters present case studies on lightweight composite design for transport structures. |
You may like...
Othello: York Notes for A-level
Rebecca Warren, William Shakespeare
Paperback
(1)R238 Discovery Miles 2 380
Lord Strange's Men and Their Plays
Lawrence Manley, Sally-Beth Maclean
Hardcover
R2,316
Discovery Miles 23 160
|