|
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science
Although the present edition of Fundamentals of Creep in Metals and
Alloys remains broadly up to date for metals, there are a range of
improvements and updates that are either desirable, or required, in
order to ensure that the book continues to meet the needs of
researchers and scholars in the general area of creep plasticity.
Besides updating the areas currently covered in the second edition
with recent advances, the third edition will broaden its scope
beyond metals and alloys to include ceramics, covalent solids,
minerals and polymers, thus addressing the fundamentals of creep in
all basic classes of materials.
Multiferroics, materials with a coexistence of magnetic and
ferroelectric order, provide an efficient route for the control of
magnetism by electric fields. The authors cover multiferroic
thin-film heterostructures, device architectures and
domain/interface effects. They critically discuss achievements as
well as limitations and assess opportunities for future
applications.
"Damage on Pumps and Systems. The Handbook for the Operation of
Centrifugal Pumps" offers a combination of the theoretical basics
and practical experience for the operation of circulation pumps in
the engineering industry.
Centrifugal pumps and systems are extremely vulnerable to damage
from a variety of causes, but the resulting breakdown can be
prevented by ensuring that these pumps and systems are operated
properly. This book provides a total overview of operating
centrifugal pumps, including condition monitoring, preventive
maintenance, life cycle costs, energy savings and economic aspects.
Extra emphasis is given to the potential damage to these pumps and
systems, and what can be done to prevent breakdown.
Addresses specific issues about pumping of metal chips, sand,
abrasive dust and other solids influidsEmphasis on economic and
efficiency aspects of predictive maintenance and condition
monitoring Uses life cycle costs (LCC) to evaluate and calculatethe
costs of pumping systems "
Many physical properties of our universe, such as the relative
strength of the fundamental interactions, the value of the
cosmological constant, etc., appear to be fine-tuned for existence
of human life. One possible explanation of this fine tuning assumes
existence of a multiverse, which consists of a very large number of
individual universes having different physical properties.
Intelligent observers populate only a small subset of these
universes, which are fine-tuned for life. In this book we will
review several interesting metamaterial systems, which capture many
features of important cosmological models and offer insights into
the physics of many other non-trivial spacetime geometries, such as
microscopic black holes, closed time-like curves (CTCs) and the
Alcubierre warp drive.
This book describes the fundamentals and potential applications
of friction stir superplasticity for unitized structures .
Conventional superplastic forming of sheets is limited to the
thickness of 3 mm because the fine grained starting material is
produced by rolling. Friction stir superplasticity has grown
rapidly in the last decade because of the effectiveness of
microstructural refinement. The thickness of the material remains
almost constant, and that allows for forming of thick
sheets/plates, which was not possible before. The field has reached
a point where designers have opportunities to expand the extent of
unitized structures, which are structures in which the traditional
primary part and any supporting structures are fabricated as a
single unit. With advanced optimization and material
considerations, this class of structures can be lighter weight and
more efficient, making them less costly, as well as mechanically
less complex, reducing areas of possible failure.
Discusses how friction stir processing allows selective
microstructural refinement without thickness changeDemonstrates how
higher thickness sheets and plates can be superplastically
formedExamples are presented for aluminum, magnesium and titanium
alloysCovers the production of low-cost unitized structures by
selectively processing cast sheets/plates "
Chitosan in Biomedical Applications provides a thorough insight
into the complete chitosan chemistry, collection, chemical
modifications, characterization and applications of chitosan in
biomedical applications and healthcare fields. Chitosan, a
biopolymer of natural origin, has been explored for its variety of
applications in biomedical research, medical diagnostic aids and
material science. It is the second most abundant natural biopolymer
after cellulose, and considered as an excellent excipient because
of its non-toxic, stable, biodegradable properties. Several
research innovations have been made on applications of chitosan in
biomedical applications. The book explores key topics, such as
molecular weight, degree of deacetylation, and molecular geometry,
along with an emphasis on recent advances in the field written by
academic, industry, and clinical researchers. Chitosan in
Biomedical Applications will be of interest to those in biomedical
fields including the biomaterials and tissue engineering community
investigating and developing biomaterials for biomedical
applications, particularly graduate students, young faculty and
others exploring chitosan-based materials.
|
|