![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly.
The 24 papers presented at the international concluding colloquium of the German priority programme (DFG-Verbundschwerpunktprogramm) "Transition," held in April 2002 in Stuttgart. The unique and successful programme ran six years, starting April 1996, and was sponsored mainly by the Deutsche Forschungsgemeinschaft, DFG, but also by the Deutsches Zentrum f r Luft-und Raumfahrt, DLR, the Physikalisch-Technische Bundesanstalt Braunschweig, PTB, and Airbus Deutschland. The papers summarise the results of the programme and cover transition mechanisms, transition prediction, transition control, natural transition and measurement techniques, transition - turbulence - separation, and visualisation issues. Three invited papers are devoted to mechanisms of turbulence production, to a general framework of stability, receptivity and control, and a forcing model for receptivity analysis. Almost every transition topic arising in subsonic and transonic flow is covered.
As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated."
Hydraulic Servo-systems details the basic concepts of many recent developments of nonlinear identification and nonlinear control and their application to hydraulic servo-systems: developments such as feedback linearisation and fuzzy control. It also reviews the principles, benefits and limitations associated with standard control design approaches such as linear state feedback control, feedforward control and compensation for static nonlinearities, because of their continued practical importance. Featuring: theoretical (physically based) modelling of hydraulic servo-systems; experimental modelling (system identification); control strategies for hydraulic servo-systems; case studies and experimental results. Appendices outline the most important fundamentals of (nonlinear) differential geometry and fuzzy control. The book is very application-oriented and provides the reader with detailed working procedures and hints for implementation routines and software tools. It will interest scientists and qualified engineers involved in the analysis and design of hydraulic control systems, especially in advanced hydraulic industries, the aeronautical and space and automotive industries.
Thisvolumecontainsacollectionofpapersbyinternationalexpertsingeoph- ical ?uid dynamics, based upon presentations at a colloquium held in memory of Pedro Ripa on the ?rst anniversary of his untimely death. They review or present recent developments in hydrodynamic stability theory, Hamiltonian ?uid mechanics,balanceddynamics, waves,vortices,generaloceanographyand the physical oceanography of the Gulf ofCalifornia; all of them subjects in which Professor Ripamadeimportant contributions. His work, but also his friendly spiritandkindnesswerehighly regardedandappreciatedby colleagues and students alike around the world. This book is a tribute to his scienti?c legacy and constitutes a valuable reference for researchers and graduate s- dents interested in geophysical and general ?uid mechanics. Earlyin his career asa physicaloceanographer,Pedro Ripa made two la- mark contributions to geophysical ?uid dynamics. In 1981, he showed that the conservation of the potential vorticity is related to the invariance of the eq- tions of motion under the symmetry transformationsof the labels that identify the ?uid particles. That is, potential vorticity conservation is a consequence, via Noether's theorem, of the particle re-labelling symmetry. Two years later he published a paper entitled "General stability conditions for zonal ?ows in a one-layer model on the beta-plane or the sphere", where he established nec- sary conditions for stability in the shallow water equations, nowadays known as "Ripa's Theorem. " This is one of the very few Arnol'd-like stability con- tions that goes beyond two-dimensional or quasi-geostrophic ?ow, and stands alongside other famous stability criteria in making the foundations of the ?eld.
This book disseminates information on paper-based diagnostics devices and describes novel paper materials, fabrication techniques, and Basic Paper-based microfluidics/electronics theory. The section on sample preparation, paper-based electronics/sensors for developing paper-based point-of-care (POC) systems also contains detailed descriptions. In the application sections this book covers sensing technique for DNA/RNA, bacteria/virus and integration of lateral flow assay. The book provides deep understanding and knowledge of paper-based diagnostic device development in terms of concept, materials, fabrication and applications.
Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions. In "A neural network approach to fluid quantity measurement in dynamic environments," effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network based signal classification system is also investigated. Results obtained from the investigation are compared with traditionally used statistical averaging methods, and proves that the neural network based measurement system can produce highly accurate fluid quantity measurements in a dynamic environment. Although in this case a capacitive sensor was used to demonstrate measurement system this methodology is valid for all types of electronic sensors. The approach demonstrated in "A neural network approach to fluid quantity measurement in dynamic environments "can be applied to a wide range of fluid quantity measurement applications in the automotive, naval and aviation industries to produce accurate fluid level readings. Students, lecturers, and experts will find the description of current research about accurate fluid level measurement in dynamic environments using neural network approach useful."
This book covers fundamental principles and numerical methods relevant to the modeling of the injection molding process. As injection molding processing is related to rheology, mechanical and chemical engineering, polymer science and computational methods, and is a rapidly growing field, the book provides a multidisciplinary and comprehensive introduction to the subjects required for an understanding of the complex process. It addresses the up-to-date status of fundamental understanding and simulation technologies, without losing sight of still useful classical approaches. The main chapters of the book are devoted to the currently active fields of flow-induced crystallization and orientation evolution of fiber suspensions, respectively, followed by detailed discussion of their effects on mechanical property, shrinkage and warpage of injection-molded products. The level of the proposed book will be suitable for interested scientists, R&D engineers, application engineers, and graduate students in engineering.
1. Enables first year mechanical engineering students to gain a core foundational knowledge in all key areas 2. Provides worked examples of exam-style questions 3. Includes chapters by leading experts experienced in teaching first year students in all disciplines of mechanical engineering 4. Gives a thorough grounding in the following core engineering topics: thermodynamics, fluid mechanics, solid mechanics, dynamics, electricals and electronics, and materials science
This book presents systematic research results on curved shock wave-curved compression surface applied to the compression surface design of supersonic-hypersonic inlet, which is a brand new inlet design. The concept of supersonic inlet curved compression discussed originated from the author's research at the Deutsches Zentrum fur Luft- und Raumfahrt (DLR SM-ES) in the early 1990s. This book introduces the research history, working characteristics, performance calculation and aerodynamic configuration design method of this compression mode in detail. It also describes method of estimating the minimum drag in inlet and drag reduction effect of curved compression and proposes a new index for evaluating unit area compression efficiency of the inlet. Further, it reviews the relevant recent research on curved compression. As such it is a valuable resource for students, researchers and scientists in the fields of hypersonic propulsion and aeronautics.
This volume reflects the state of the art of numerical simulation of transitional and turbulent flows and provides an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. Following the tradition of earlier DLES workshops, these papers address numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation, magneto-hydrodynamics and the environment. A special session is devoted to quality issues of LES. The ninth Workshop on 'Direct and Large-Eddy Simulation' (DLES-9) was held in Dresden, April 3-5, 2013, organized by the Institute of Fluid Mechanics at Technische Universitat Dresden. This book is of interest to scientists and engineers, both at an early level in their career and at more senior levels.
This book begins with an introductory chapter summarizing the history of fluid mechanics. It then moves on to the essential mathematics and physics needed to understand and work in fluid mechanics. Analytical treatments are based on the Navier-Stokes equations.
Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students.
The book provides highly specialized researchers and practitioners with a major contribution to mathematical models' developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.
Since the computing revolution, modelling has become the most important way in which we further our knowledge about how the sea moves and how the processes in the sea operate. The coast and the continental shelf are two of the most important areas of the sea to understand. Coastal and Shelf Sea Modelling is therefore very timely and important. In this text, modelling the processes that occur in the sea is motivated continually through real life examples. Sometimes these are incorporated naturally within the text, but there are also a number of case studies taken from the recent research literature. These will be particularly valuable to students as they are presented in a style more readily accessible than that found in a typical research journal. The motivation for modelling is care for the environment. The well publicised problem of global warming, the phenomenon of El Nino, more localised pollution scares caused by tanker accidents and even smaller scale coastal erosion caused by storms all provide motivation for modelling and all get coverage in this text. Particularly novel features of the book include a systematic treatment of the modelling process in a marine context, the inclusion of diffusion in some detail, ecosystems modelling and a brief foray into wave prediction. The final chapter provides the reader with the opportunity to do some modelling; there are many worked examples followed by exercises that readers can try themselves. All answers are provided. Throughout, the style is informal and the technicalities in term of mathematics are kept to a minimum. Coastal and Shelf Sea Modelling is particularly suitable for graduate marine and oceanographic modelling courses, but will also prove useful to coastal engineers and students at any level interested in the quantitative modelling of marine processes. It is stressed that only a minimal level of mathematics (first year calculus or less) is required; the style and content is introductory.
Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, shock-boundary-layer interaction and aeroelasticity.
Despite dramatic advances in numerical and experimental methods of fluid mechanics, the fundamentals are still the starting point for solving flow problems. This textbook introduces the major branches of fluid mechanics of incompressible and compressible media, the basic laws governing their flow, and gas dynamics. Fluid Mechanics demonstrates how flows can be classified and how specific engineering problems can be identified, formulated and solved, using the methods of applied mathematics. The material is elaborated in special applications sections by more than 200 exercises and separately listed solutions. The final section comprises the Aerodynamics Laboratory, an introduction to experimental methods treating eleven flow experiments. This class-tested textbook offers a unique combination of introduction to the major fundamentals, many exercises, and a detailed description of experiments.
It is our pleasure to present these proceedings for "The Aerodynamics of Heavy Vehicles II: Trucks, Buses and Trains" International Conference held in Lake - hoe, California, August 26-31, 2007 by Engineering Conferences International (ECI). Brought together were the world's leading scientists and engineers from industry, universities, and research laboratories, including truck and high-speed train manufacturers and operators. All were gathered to discuss computer simu- tion and experimental techniques to be applied for the design of the more efficient trucks, buses and high-speed trains required in future years. This was the second conference in the series. The focus of the first conference in 2002 was the interplay between computations and experiment in minimizing ae- dynamic drag. The present proceedings, from the 2007 conference, address the development and application of advanced aerodynamic simulation and experim- tal methods for state-of-the-art analysis and design, as well as the development of new ideas and trends holding promise for the coming 10-year time span. Also - cluded, are studies of heavy vehicle aerodynamic tractor and trailer add-on - vices, studies of schemes to delay undesirable flow separation, and studies of - derhood thermal management.
All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes performance."
This book is designed to: Provide students with the tools to model, analyze and solve a wide range of engineering applications involving conduction heat transfer. Introduce students to three topics not commonly covered in conduction heat transfer textbooks: perturbation methods, heat transfer in living tissue, and microscale conduction. Take advantage of the mathematical simplicity of o- dimensional conduction to present and explore a variety of physical situations that are of practical interest. Present textbook material in an efficient and concise manner to be covered in its entirety in a one semester graduate course. Drill students in a systematic problem solving methodology with emphasis on thought process, logic, reasoning and verification. To accomplish these objectives requires judgment and balance in the selection of topics and the level of details. Mathematical techniques are presented in simplified fashion to be used as tools in obtaining solutions. Examples are carefully selected to illustrate the application of principles and the construction of solutions. Solutions follow an orderly approach which is used in all examples. To provide consistency in solutions logic, I have prepared solutions to all problems included in the first ten chapters myself. Instructors are urged to make them available electronically rather than posting them or presenting them in class in an abridged form.
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors
Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While the book is intended for this audience, it will also interest researchers and graduate students interested in the mechanics and materials aspects of this matter.
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
This volume presentsa selection of survey and research articles based on invited lectures and contributed talks presented at the Workshop on Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, inSeptember 12-14, 2011. The contributions are devoted to mathematical modeling, numerical simulation and their applications, providing the readers a state-of-the-art overview on the latest findings and new challenges on the topic. The book includes research work of worldwide recognized leaders in their respective fields and presents advances in both theory and applications, making it appealing to a vast range of audience, in particular mathematicians, engineers and physicists."
This volume contains the proceedings of the IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, held at Nagoya University, Nagoya, Japan, in September 2006. Leading experts in turbulence research were brought together at this Symposium to exchange ideas and discuss, in the light of the recent progress in computational methods, new perspectives in our understanding of turbulence. Special emphasis was given to fundamental aspects of the physics of turbulence. The subjects discussed here cover: computational physics and the theory of canonical turbulent flows; experimental approaches to fundamental problems in turbulence; turbulence modeling and numerical methods; and geophysical and astrophysical turbulence. This work should be useful to graduate students and researchers interested in fundamental aspects of turbulence. |
![]() ![]() You may like...
New Approaches in Intelligent Image…
Roumen Kountchev, Kazumi Nakamatsu
Hardcover
On Meaningful Scientific Laws
Jean-Claude Falmagne, Christopher Doble
Hardcover
Classical and Stochastic Laplacian…
Bjoern Gustafsson, Razvan Teodorescu, …
Hardcover
R1,641
Discovery Miles 16 410
Analysis and Identification of…
Anish Deb, Srimanti Roychoudhury, …
Hardcover
Systematic Design of Analog IP Blocks
Jan Van den Bussche, Georges Gielen, …
Hardcover
R3,142
Discovery Miles 31 420
Air Traffic Control Automated Systems
Bestugin A.R., Eshenko A.A., …
Hardcover
R3,569
Discovery Miles 35 690
Madam & Eve: Take Us To Your Leader
Stephen Francis, Rico Francis
Paperback
|