![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
Avionics often serves as the tip of the spear for research into user-interface and systems usability in aviation. However, this emphasis on flashy, technology-driven design can come with a cost: the sacrifice of practical utility, which, in the high-stakes environment of military aviation, can lead directly to catastrophe. Mission Adaptive Display Technologies and Operational Decision Making in Aviation explores the use of adaptive and assistive technologies in aviation to establish clear guidelines for the design and implementation of such technologies to better serve the needs of both military and civilian pilots. Benefiting from the authors' combined experience of more than 40 years in the aviation industry and over 25,000 flight-hours, this volume targets a wide audience of engineers and business professionals. This premier reference source covers topics of interest to aviators and engineers, including aerodynamic systems design, operational decision theory, user interface design, avionics, and concepts and cases in flight operations, mission performance, and pilot training.
Water Hammer Simulations is a comprehensive guide to modelling transients in closed pipes. The models presented range from those used for the first studies into the field to the most advanced available today. All of the models are described in detail, starting from the simplest to the most complex. Most of the presented models have been implemented in computer codes, which are provided with the book as both executable files and the sources. The use of these programs is explained in the book where they are applied in a number of examples; the results are critically commented, to allow the reader to be able to build an appropriate model for their own use. Suggestions on the most appropriate model to be built and used are provided throughout the book. Laboratory tests and real case applications are also presented and discussed, together with the still unresolved problems in the field. The focus of researcher's efforts we will be on these issues in the coming years. The book is suitable for professionals working in the field as well as scholars and undergraduate students.
"Rubber Seals for Fluid and Hydraulic Systems" is a comprehensive guide to the manufacturing and applications of rubber seals, with essential coverage for industry sectors including aviation, oil drilling and the automotive industry. Fluid leakage costs industry millions of dollars every year. In addition to wasted money, unattended leaks can result in downtime, affect product quality, pollute the environment, and cause injury. Successful sealing involves containment of fluid within a system while excluding the contaminants; the resilience of rubber enables it to be used to achieve these two objectives and create a tight sealing effect. A sound understanding of the complex factors involved in successful fluid sealing is essential for engineers who specify, design, operate and maintain machinery and mechanical equipment. This book focuses on the characteristics of rubbers as seals, their manufacturing procedures, the implications of their physical and chemical characteristics for the sealing function in the fluid and hydraulic systems, how rubbers seal and prevent leaks, what properties are required for sealing function, and how they change before and after installation. The chapter on Manufacture of Seals and O Rings includes
approximately 25 workable starting point formulations based on
different rubbers, with cure and property data of those
formulations as guidelines for technologists and engineers.
Computational fluid dynamics (CFD) and optimal shape design (OSD)
are of practical importance for many engineering applications - the
aeronautic, automobile, and nuclear industries are all major users
of these technologies.
Transport phenomena are the processes and rules by which heat, mass, and momentum move through and between materials and systems. Along with thermodynamics, mechanics, and electromagnetism, this body of knowledge and theory forms the core principals of all physical systems and is essential to all engineering disciplines. This new edition of a classic work on how transport phenomena behave in materials and materials systems will provide expanded coverage and up-to-date theory and knowledge from today's research on heat transfer and fluid behavior, with ample examples of practical applications to materials processing and engineering. Professional engineers and students alike will find one of the clearest and most accessible approaches to an often difficult and challenging subject. Logical pedagogy, with clear applications to real materials engineering problems will make more vivid the abstract body of knowledge that comprises today's understanding of transport phenomena. Readers will find: A new chapter on boiling and condensationRevised chapters on heat transport, mass transport in solid state and mass transport in fluidsRevised and expanded end-of-chapter problems and exercisesS.I. Units throughoutExtensive Appendices of standard materials propertiesFor classroom use, a Solutions Manual is available
Fluid mechanics is the study of how fluids behave and interact
under various forces and in various applied situations, whether in
liquid or gas state or both. The author compiles pertinent
information that are introduced in the more advanced classes at the
senior level and at the graduate level. "Advanced Fluid Mechanics"
courses typically cover a variety of topics involving fluids in
various multiple states (phases), with both elastic and non-elastic
qualities, and flowing in complex ways. This new text will
integrate both the simple stages of fluid mechanics
("Fundamentals") with those involving more complex parameters,
including Inviscid Flow in multi-dimensions, Viscous Flow and
Turbulence, and a succinct introduction to Computational Fluid
Dynamics. It will offer exceptional pedagogy, for both classroom
use and self-instruction, including many worked-out examples,
end-of-chapter problems, and actual computer programs that can be
used to reinforce theory with real-world applications.
This volume collects the edited and reviewed contributions presented in the 8th iTi Conference on Turbulence, held in Bertinoro, Italy, in September 2018. In keeping with the spirit of the conference, the book was produced afterwards, so that the authors had the opportunity to incorporate comments and discussions raised during the event. The respective contributions, which address both fundamental and applied aspects of turbulence, have been structured according to the following main topics: I TheoryII Wall-bounded flowsIII Simulations and modellingIV ExperimentsV Miscellaneous topicsVI Wind energy
The field of fluid mechanics is vast and has numerous and diverse applications. Presented papers from the 11th International Conference on Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow are contained in this book and cover a wide range of topics, including basic formulations and their computer modelling as well as the relationship between experimental and analytical results. Innovation in fluid-structure approaches including emerging applications as energy harvesting systems, studies of turbulent flows at high Reynold number, or subsonic and hypersonic flows are also among the topics covered. The emphasis placed on multiphase flow in the included research works is due to the fact that fluid dynamics processes in nature are predominantly multi-phased, i.e. involving more than one phase of a component such as liquid, gas or plasma. The range of related problems of interest is vast: astrophysics, biology, geophysics, atmospheric processes, and a large variety of engineering applications. Multiphase fluid dynamics are generating a great deal interest, leading to many notable advances in experimental, analytical, and numerical studies in this area. While progress is continuing in all three categories, advances in numerical solutions are likely the most conspicuous, owing to the continuing improvements in computer power and the software tools available to researchers. Progress in numerical methods has not only allowed for the solution of many practical problems but also helped to improve our understanding of the physics involved. Many unresolved issues are inherent in the very definition of multiphase flow, where it is necessary to consider coupled processes on multiple scales, as well as the interplay of a wide variety of relevant physical phenomena.
Conjugate methods, also sometimes referred to as coupled equations, are used to analyze the inter-dependent relationship of two sets of governing equations--for example in understanding the movement of heat across the boundary from one object to another or the transfer of energy from a moving fluid to a surrounding elastic medium. This will be the first definitive text in years to offer a broad overview of conjugate methods and their more typical applications, with an emphasis on the advantages and benefits of this type of engineering analysis. Students and professionals alike will gain a better understanding of the practical uses for conjugate mathematical methods in solving often intractable problems in heat transfer and fluid mechanics. Ample end of chapter examples and problem sets will help to reinforce the theory and knowledge presented in the book. Some highlights are: Reviews basics of heat conduction in solids and convective heat transfer Offers both analytic and numerical methods for solving conjugate boundary condition problems Numerous detailed examples of applications in industrial problems, biomechanical systems, and other areas of heat transfer and fluid mechanics End of chapter problems and Solutions Manual
This book addresses the concepts of unstable flow solutions, convective instability and absolute instability, with reference to simple (or toy) mathematical models, which are mathematically simple despite their purely abstract character. Within this paradigm, the book introduces the basic mathematical tools, Fourier transform, normal modes, wavepackets and their dynamics, before reviewing the fundamental ideas behind the mathematical modelling of fluid flow and heat transfer in porous media. The author goes on to discuss the fundamentals of the Rayleigh-Benard instability and other thermal instabilities of convective flows in porous media, and then analyses various examples of transition from convective to absolute instability in detail, with an emphasis on the formulation, deduction of the dispersion relation and study of the numerical data regarding the threshold of absolute instability. The clear descriptions of the analytical and numerical methods needed to obtain these parametric threshold data enable readers to apply them in different or more general cases. This book is of interest to postgraduates and researchers in mechanical and thermal engineering, civil engineering, geophysics, applied mathematics, fluid mechanics, and energy technology. |
You may like...
The Blue Book; a Comprehensive Official…
Panama-Pacific International Exposition
Hardcover
R889
Discovery Miles 8 890
The Finite Element Method for Fluid…
Olek C. Zienkiewicz, R.L. Taylor, …
Hardcover
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Compressibility, Turbulence and High…
Thomas B. Gatski, Jean-Paul Bonnet
Hardcover
R2,266
Discovery Miles 22 660
Turbulence in Porous Media - Modeling…
Marcelo J. S. de Lemos
Hardcover
R3,974
Discovery Miles 39 740
Computational Fluid Dynamics in Fire…
Guan Heng Yeoh, Kwok Kit Yuen
Hardcover
|