![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
Jiji's extensive understanding of how students think and learn, what they find difficult, and which elements need to be stressed is integrated in this work. He employs an organization and methodology derived from his experience and presents the material in an easy to follow form, using graphical illustrations and examples for maximum effect. The second, enlarged edition provides the reader with a thorough introduction to external turbulent flows, written by Glen Thorncraft. Additional highlights of note: Illustrative examples are used to demonstrate the application of principles and the construction of solutions, solutions follow an orderly approach used in all examples, systematic problem-solving methodology emphasizes logical thinking, assumptions, approximations, application of principles and verification of results. Chapter summaries help students review the material. Guidelines for solving each problem can be selectively given to students.
This volume will contain selected papers from the lectures held at the BAIL 2010 Conference, which took place from July 5th to 9th, 2010 in Zaragoza (Spain). The papers present significant advances in the modeling, analysis and construction of efficient numerical methods to solve boundary and interior layers appearing in singular perturbation problems. Special emphasis is put on the mathematical foundations of such methods and their application to physical models. Topics in scientific fields such as fluid dynamics, quantum mechanics, semiconductor modeling, control theory, elasticity, chemical reactor theory, and porous media are examined in detail.
This volume contains the papers of a German Symposium dealing with research and project work in numerical and experimental aerodynamics and fluidmechanics for aerospace and other applications. Results are reported from universities, research-establishments and industry. It therefore gives a broad overview over the ongoing work in this field in Germany.
As mentioned in the Introduction to Volume I, the present monograph is intended both for mathematicians interested in applications of the theory of linear operators and operator-functions to problems of hydrodynamics, and for researchers of applied hydrodynamic problems, who want to study these problems by means of the most recent achievements in operator theory. The second volume considers nonself-adjoint problems describing motions and normal oscillations of a homogeneous viscous incompressible fluid. These ini tial boundary value problems of mathematical physics include, as a rule, derivatives in time of the unknown functions not only in the equation, but in the boundary conditions, too. Therefore, the spectral problems corresponding to such boundary value problems include the spectral parameter in the equation and in the bound ary conditions, and are nonself-adjoint. In their study, we widely used the theory of nonself-adjoint operators acting in a Hilbert space and also the theory of operator pencils. In particular, the methods of operator pencil factorization and methods of operator theory in a space with indefinite metric find here a wide application. We note also that this volume presents both the now classical problems on oscillations of a homogeneous viscous fluid in an open container (in an ordinary state and in weightlessness) and a new set of problems on oscillations of partially dissipative hydrodynamic systems, and problems on oscillations of a visco-elastic or relaxing fluid. Some of these problems need a more careful additional investigation and are rather complicated."
Hydraulic Servo-systems details the basic concepts of many recent developments of nonlinear identification and nonlinear control and their application to hydraulic servo-systems: developments such as feedback linearisation and fuzzy control. It also reviews the principles, benefits and limitations associated with standard control design approaches such as linear state feedback control, feedforward control and compensation for static nonlinearities, because of their continued practical importance. Featuring: theoretical (physically based) modelling of hydraulic servo-systems; experimental modelling (system identification); control strategies for hydraulic servo-systems; case studies and experimental results. Appendices outline the most important fundamentals of (nonlinear) differential geometry and fuzzy control. The book is very application-oriented and provides the reader with detailed working procedures and hints for implementation routines and software tools. It will interest scientists and qualified engineers involved in the analysis and design of hydraulic control systems, especially in advanced hydraulic industries, the aeronautical and space and automotive industries.
The priority research, Analysis, Modelling and Numerical Calculations ofMul tiphase Flows" was running for 6 years (from 1996 to 2002) and financially sup ported by the Deutsche Forschungsgemeinschaft (DFG). The main objective ofthe research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and bio chemical reactors. The research comprised steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, loop reactors, and aerated stirred vessels. For this purpose, new and im proved measurement techniques should be developed. From the resulting knowl edge and data, new and refined models for describing the underlying physical processes should result, which can be used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up ofsuch processes should be pos sible on a more reliable basis. For achieving this objective three research areas were defined: development and improvement of experimental techniques which allow accu rate measurements in steady and unsteady multiphase flows elaboration of new modelling approaches in order to describe the basic trans port processes for mass, momentum, and heat in bubbly flows development of analytical and numerical methods supplemented by the new modelling strategies in order to support optimisation and lay-out of technical multiphase processes."
This book is a translation of the French book "Pollution atmospherique. Des p- cessus a la modelisation", published by Springer France (2007). The content is mainly derived from a course devoted to air pollution I taught at Ecole nationale des ponts et chaussees (ENPC; one of the foremost French high schools, at ParisTech Institute of Technology and University Paris-Est) during the decade 1997-2006. This book has of course been deeply in uenced by my research activity at CEREA, the Teaching and Research Center for Atmospheric Envir- ment, a joint laboratory between ENPC and the Research and Development Di- sion of Electricite de France (EDF R&D), that I created and then headed from 2002 to 2007. I want to thank many of my colleagues for discussions, help and review. Thanks to Vivien Mallet for his careful review, his availability and his pieces of advice (both for the content and the form of this book). Thanks to Marc Bocquet, Karine Sartelet- Kata, Irene Korsakissok for their help in reviewing chapters. I want also to thank a few colleagues for having provided me illustrations from their research work. Thanks to Bastien Albriet, Marc Bocquet, Edouard Debry, Irene Korsakissok, H- sein Malakooti, Denis Quelo, Yelva Roustan, Karine Sartelet, Christian Seigneur and Marilyne Tombette. Thanks also to the American family, Celine and Julien, for their review of the introduction.
The articles in this volume present the state-of-the-art in noise prediction, modeling and measurement. The articles are partially based on class notes provided during the course Noise sources in turbulent shear flows', given at CISM on April 2011. The first part contains general concepts of aero acoustics, including vortex sound theory and acoustic analogies, in the second part particular emphasis is put into arguments of interest for engineers and relevant for aircraft design: jet noise, airfoil broadband noise, boundary layer noise (including interior noise and its control) and the concept of noise sources, their theoretical modeling and identification in turbulent lows. All these arguments are treated extensively with the inclusion of many practical examples and references to engineering applications.
This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.
Thisvolumecontainsacollectionofpapersbyinternationalexpertsingeoph- ical ?uid dynamics, based upon presentations at a colloquium held in memory of Pedro Ripa on the ?rst anniversary of his untimely death. They review or present recent developments in hydrodynamic stability theory, Hamiltonian ?uid mechanics,balanceddynamics, waves,vortices,generaloceanographyand the physical oceanography of the Gulf ofCalifornia; all of them subjects in which Professor Ripamadeimportant contributions. His work, but also his friendly spiritandkindnesswerehighly regardedandappreciatedby colleagues and students alike around the world. This book is a tribute to his scienti?c legacy and constitutes a valuable reference for researchers and graduate s- dents interested in geophysical and general ?uid mechanics. Earlyin his career asa physicaloceanographer,Pedro Ripa made two la- mark contributions to geophysical ?uid dynamics. In 1981, he showed that the conservation of the potential vorticity is related to the invariance of the eq- tions of motion under the symmetry transformationsof the labels that identify the ?uid particles. That is, potential vorticity conservation is a consequence, via Noether's theorem, of the particle re-labelling symmetry. Two years later he published a paper entitled "General stability conditions for zonal ?ows in a one-layer model on the beta-plane or the sphere", where he established nec- sary conditions for stability in the shallow water equations, nowadays known as "Ripa's Theorem. " This is one of the very few Arnol'd-like stability con- tions that goes beyond two-dimensional or quasi-geostrophic ?ow, and stands alongside other famous stability criteria in making the foundations of the ?eld.
This book covers fundamental principles and numerical methods relevant to the modeling of the injection molding process. As injection molding processing is related to rheology, mechanical and chemical engineering, polymer science and computational methods, and is a rapidly growing field, the book provides a multidisciplinary and comprehensive introduction to the subjects required for an understanding of the complex process. It addresses the up-to-date status of fundamental understanding and simulation technologies, without losing sight of still useful classical approaches. The main chapters of the book are devoted to the currently active fields of flow-induced crystallization and orientation evolution of fiber suspensions, respectively, followed by detailed discussion of their effects on mechanical property, shrinkage and warpage of injection-molded products. The level of the proposed book will be suitable for interested scientists, R&D engineers, application engineers, and graduate students in engineering.
The 24 papers presented at the international concluding colloquium of the German priority programme (DFG-Verbundschwerpunktprogramm) "Transition," held in April 2002 in Stuttgart. The unique and successful programme ran six years, starting April 1996, and was sponsored mainly by the Deutsche Forschungsgemeinschaft, DFG, but also by the Deutsches Zentrum f r Luft-und Raumfahrt, DLR, the Physikalisch-Technische Bundesanstalt Braunschweig, PTB, and Airbus Deutschland. The papers summarise the results of the programme and cover transition mechanisms, transition prediction, transition control, natural transition and measurement techniques, transition - turbulence - separation, and visualisation issues. Three invited papers are devoted to mechanisms of turbulence production, to a general framework of stability, receptivity and control, and a forcing model for receptivity analysis. Almost every transition topic arising in subsonic and transonic flow is covered.
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly.
This book begins with an introductory chapter summarizing the history of fluid mechanics. It then moves on to the essential mathematics and physics needed to understand and work in fluid mechanics. Analytical treatments are based on the Navier-Stokes equations.
Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students.
Since the computing revolution, modelling has become the most important way in which we further our knowledge about how the sea moves and how the processes in the sea operate. The coast and the continental shelf are two of the most important areas of the sea to understand. Coastal and Shelf Sea Modelling is therefore very timely and important. In this text, modelling the processes that occur in the sea is motivated continually through real life examples. Sometimes these are incorporated naturally within the text, but there are also a number of case studies taken from the recent research literature. These will be particularly valuable to students as they are presented in a style more readily accessible than that found in a typical research journal. The motivation for modelling is care for the environment. The well publicised problem of global warming, the phenomenon of El Nino, more localised pollution scares caused by tanker accidents and even smaller scale coastal erosion caused by storms all provide motivation for modelling and all get coverage in this text. Particularly novel features of the book include a systematic treatment of the modelling process in a marine context, the inclusion of diffusion in some detail, ecosystems modelling and a brief foray into wave prediction. The final chapter provides the reader with the opportunity to do some modelling; there are many worked examples followed by exercises that readers can try themselves. All answers are provided. Throughout, the style is informal and the technicalities in term of mathematics are kept to a minimum. Coastal and Shelf Sea Modelling is particularly suitable for graduate marine and oceanographic modelling courses, but will also prove useful to coastal engineers and students at any level interested in the quantitative modelling of marine processes. It is stressed that only a minimal level of mathematics (first year calculus or less) is required; the style and content is introductory.
Sloshing causes liquid to fluctuate, making accurate level readings difficult to obtain in dynamic environments. The measurement system described uses a single-tube capacitive sensor to obtain an instantaneous level reading of the fluid surface, thereby accurately determining the fluid quantity in the presence of slosh. A neural network based classification technique has been applied to predict the actual quantity of the fluid contained in a tank under sloshing conditions. In "A neural network approach to fluid quantity measurement in dynamic environments," effects of temperature variations and contamination on the capacitive sensor are discussed, and the authors propose that these effects can also be eliminated with the proposed neural network based classification system. To examine the performance of the classification system, many field trials were carried out on a running vehicle at various tank volume levels that range from 5 L to 50 L. The effectiveness of signal enhancement on the neural network based signal classification system is also investigated. Results obtained from the investigation are compared with traditionally used statistical averaging methods, and proves that the neural network based measurement system can produce highly accurate fluid quantity measurements in a dynamic environment. Although in this case a capacitive sensor was used to demonstrate measurement system this methodology is valid for all types of electronic sensors. The approach demonstrated in "A neural network approach to fluid quantity measurement in dynamic environments "can be applied to a wide range of fluid quantity measurement applications in the automotive, naval and aviation industries to produce accurate fluid level readings. Students, lecturers, and experts will find the description of current research about accurate fluid level measurement in dynamic environments using neural network approach useful."
Stochastic Methods for Flow in Porous Media: Coping with
Uncertainties explores fluid flow in complex geologic environments.
The parameterization of uncertainty into flow models is important
for managing water resources, preserving subsurface water quality,
storing energy and wastes, and improving the safety and economics
of extracting subsurface mineral and energy resources. * As never seen before:
Early Developments of Modern Aerodynamics provides the wider aeronautical community with an insight into the historical development of aerodynamics. There were a number of key developments in the subject by German and Russian scientists and engineers such as Prandtl, Kutta and Zhukovskii at the beginning of the 20th century. All aerodynamics has been based on papers by these people but these fundamental papers are not available in English, indeed some of them have never before been translated. This text presents these papers, in English translation, together with an accompanying commentary putting them into the context of their period and showing their relevance to modern aerodynamics. Aimed at academics and professional engineers this book re-establishes the basis of the science of aerodynamics.
It is our pleasure to present these proceedings for "The Aerodynamics of Heavy Vehicles II: Trucks, Buses and Trains" International Conference held in Lake - hoe, California, August 26-31, 2007 by Engineering Conferences International (ECI). Brought together were the world's leading scientists and engineers from industry, universities, and research laboratories, including truck and high-speed train manufacturers and operators. All were gathered to discuss computer simu- tion and experimental techniques to be applied for the design of the more efficient trucks, buses and high-speed trains required in future years. This was the second conference in the series. The focus of the first conference in 2002 was the interplay between computations and experiment in minimizing ae- dynamic drag. The present proceedings, from the 2007 conference, address the development and application of advanced aerodynamic simulation and experim- tal methods for state-of-the-art analysis and design, as well as the development of new ideas and trends holding promise for the coming 10-year time span. Also - cluded, are studies of heavy vehicle aerodynamic tractor and trailer add-on - vices, studies of schemes to delay undesirable flow separation, and studies of - derhood thermal management.
This volume reflects the state of the art of numerical simulation of transitional and turbulent flows and provides an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. Following the tradition of earlier DLES workshops, these papers address numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation, magneto-hydrodynamics and the environment. A special session is devoted to quality issues of LES. The ninth Workshop on 'Direct and Large-Eddy Simulation' (DLES-9) was held in Dresden, April 3-5, 2013, organized by the Institute of Fluid Mechanics at Technische Universitat Dresden. This book is of interest to scientists and engineers, both at an early level in their career and at more senior levels.
Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While the book is intended for this audience, it will also interest researchers and graduate students interested in the mechanics and materials aspects of this matter.
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
This volume presentsa selection of survey and research articles based on invited lectures and contributed talks presented at the Workshop on Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, inSeptember 12-14, 2011. The contributions are devoted to mathematical modeling, numerical simulation and their applications, providing the readers a state-of-the-art overview on the latest findings and new challenges on the topic. The book includes research work of worldwide recognized leaders in their respective fields and presents advances in both theory and applications, making it appealing to a vast range of audience, in particular mathematicians, engineers and physicists."
This book concentrates on the design and development of integrated optic waveguide sensors using silicon based materials. The implementation of such system as a tool for detecting adulteration in petroleum based products as well as its use for detection of glucose level in diabetes are highlighted. The first chapters are dedicated to the development of the theoretical model while the final chapters are focused on the different applications of such sensors. It gives the readers the full background in the field of sensors, reasons for using silicon oxynitride as a potential waveguide material as well as its fabrication processes and possible uses. |
You may like...
Disciple - Walking With God
Rorisang Thandekiso, Nkhensani Manabe
Paperback
(1)
Discrimination and Privacy in the…
Bart Custers, Toon Calders, …
Hardcover
R4,064
Discovery Miles 40 640
Ratels Aan Die Lomba - Die Storie Van…
Leopold Scholtz
Paperback
(4)
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R6,648
Discovery Miles 66 480
Emerging Approaches in Design and New…
Esen Goekce OEzdamar, Oksan Tandogan
Hardcover
R5,333
Discovery Miles 53 330
|