![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
This work provides comprehensive guidance on maintaining old waterfront walls, especially gravity walls constructed with stone masonry, brick blocks or mass concrete. It should be of use to engineers and owners responsible for such structure. Many existing waterfront structures (harbour and dock walls, breakwaters, seawalls, flood defences, skin walls, bridge piers and abutments) are crucial parts of industrial or environmental facilities. Many date back to the 19th century and earlier, and information on their design and construction is often incomplete. They are often massive structures, and the problems of working over or under water and on the buried back of the wall mean that they are difficult and expensive to investigate and maintain, yet they represent substantial capital assets and appropriate management and maintenance are essential. This work draws together a wealth of information and experience on the types of wall that were constructed up to the earlier part of this century. It includes numerous drawings and illustrations of these walls and reviews their performance. It goes on to identify and describe the most suitable techniques available for their inspection, struct
This volume in the Hydraulic Machinery Book Series covers the most important types of hydraulic machinery: hydraulic turbines for transforming water power to mechanical output; and pumps for producing fluid pressure for many purposes. It describes the features of mechanical design of various types of turbines and pumps. The structure of a hydraulic machine is decided primarily to satisfy the need of fluid flow, so hydraulic characteristics of the machines are also stressed. Manufacturing processes of turbines and pumps and their requirements are referred to in chapters on mechanical construction.
The rapid increase in capabilities at neutron and x-ray scattering sources has resulted in a wealth of highly accurate data on liquids, allowing for the testing of sophisticated models pertinent to the microscopic dynamics. This book, written with the experimentalist in the field of liquids in mind, is a practical guide on how to infer the maximum amount of information from the data using a minimum number of parameters, employing a fail-safe framework that ensures that pitfalls are avoided and that small differences between various liquids can be uncovered. Also, it details excitations for a range of liquids, covering simple fluids, colloids, mixtures, metals and superfluids. Results are interpreted in words rather than in equations, bringing to the fore new links between these fluids and between spontaneous fluctuations involving thousands of atoms down to those involving just a few. By providing a review of scattering results in the field of liquids, and placing various liquids in context, the book gives an overview for the graduate student and the postdoc entering the field, and a refresher course, based on modern results, for established experimentalists. Moreover, in re-establishing the connection between the large-scale properties of liquids, and their underlying collision sequences, the book directly ties experimental results to the most important open questions in the field. It is hoped that the book will inspire theorists to take up the challenges it poses.
This book gives the basic analytical framework for the description of turbulent flows and discusses various types encountered by civil engineers involved in hydraulic analysis and design, as well as environmental engineers. It also presents a detailed exposition of the various dimensions of turbulent flow. The book is extremely useful for practising engineers, particularly in the field of hydraulic analysis and design, building dynamics and environmental engineering.
This wise, eloquent volume distils the essence of Dr. Jerry Lewis' rich 25-year background in the teaching of psychotherapeutic skills to residents and other professionals - skills that are central to the core identity of the psychiatrist.
The book is concerned with mathematical modelling of supersonic and hyper sonic flows about bodies. Permanent interest in this topic is stimulated, first of all, by aviation and aerospace engineering. The designing of aircraft and space vehicles requires a more precise prediction of the aerodynamic and heat transfer characteristics. Together with broadening of the flight condition range, this makes it necessary to take into account a number of gas dynamic and physical effects caused by rarefaction, viscous-inviscid interaction, separation, various physical and chemical processes induced by gas heating in the intensive bow shock wave. The flow field around a body moving at supersonic speed can be divided into three parts, namely, shock layer, near wake including base flow, and far wake. The shock layer flow is bounded by the bow shock wave and the front and lat eral parts of the body surface. A conventional approach to calculation of shock layer flows consists in a successive solution of the inviscid gas and boundary layer equations. When the afore-mentioned effects become important, implementation of these models meets difficulties or even becomes impossible. In this case, one has to use a more general approach based on the viscous shock layer concept."
Vortex flow is one of the fundamental types of fluid and gas motion. These flows are the most spectacular in the form of concentrated vortices, characterized by the localization of vorticity (curl of velocity) in bounded regions of a space, beyond which the vorticity is either absent or rapidly falls down to zero. Concentrated vortices are often observed in nature, exemplified by atmospheric cyclones, whirlwinds and tornados, oceanic vortices, whirlpools on a water s- face, and ring vortices caused by explosive outburst of volcanoes. In technical - vices concentrated vortices form when flow separates from sharp edges of flying vehicles and ships. Among these are vortices flowing off the ends of airplane wings, and intentionally generated vortices for intensification of burning in c- bustion chambers, vortices in cyclonic devices used for mixing or separation of impurities in fluids and gases. One such remarkable and frequent type of conc- trated vortices is a vortex ring which constitutes a vortex tube closed into a t- oidal ring moving in a surrounding fluid like an isolated body out of contact with solid boundaries of the flow region if such boundaries exist. Formation and motion of vortex rings are important part of the dynamics of a continuum medium and have been studied for more than a century.
This well-written book explains the theory of spectral methods and their application to the computation of viscous incompressible fluid flows in clear and elementary terms. It begins with an introduction to the fundamentals of spectral methods and then moves on to cover, in particular, the Fourier and Chebyshev methods. Examples are included. Chapters 6 and 7 handle streamfunction-vorticity and velocity-pressure fomulations of the Navier-Stokes equations. Chapter 8 and 9 address special topics such as self- adaptive coordinate transform, treatment of singularities, and domain decomposition. The work will be useful to those teaching in the field at the graduate level, as well as to researchers working in the area.
The rapid growth of literature on convective heat and mass transfer through porous media has brought both engineering and fundamental knowledge to a new state of completeness and depth. Additionally, several new questions of fundamental merit have arisen in several areas which bear direct relation to further advancement of basic knowledge and applications in this field. For example, the growth of fundamental heat transfer data and correlations for engineering use for saturated media has now reached the point where the relations for heat transfer coefficients and flow parameters are known well enough for design purposes. Multiple flow field regimes in natural convection have been identified in several important enclosure geometries. New questions have arisen on the nature of equations being used in theoretical studies, i. e. , the Validity of Darcy assumption is being brought into question; Wall effects in high and low velocity flow fields have been found to play a role in predicting transport coefficients; The formulation of transport problems in fractured media are being investigated as both an extension of those in a homogeneous medium and for application in engineering systems in geologic media and problems on saturated media are being addressed to determine their proper formulation and solution. The long standing problem of how to adequately formulate and solve problems of multi-phase heat and mass transfer in heterogeneous media is important in the technologies of chemical reactor engineering and enhanced oil recovery.
This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem, the use of the Poincare map in the theory of limit cycles, the theory of rotated vector fields and its use in the study of limit cycles and homoclinic loops, and a description of the behavior and termination of one-parameter families of limit cycles. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations, including new sections on Francoise's algorithm for higher order Melnikov functions and on the finite codimension bifurcations that occur in the class of bounded quadratic systems.
This book serves as an extension to the many introductory books on fluid mechanics. It maintains an emphasis on the essential physical implications of the governing mathematical relationships, presenting a few examples of important cases of ideal flow.
For centuries, physical models have been used to investigate complex hydraulic problems. Leonardo da Vinci (1452-1519) stated, "I will treat of such a subject. But first of all, 1 shall make a few experiments and then demonstrate why bodies are forced to act in this matter. " Even with the current advancements of mathematical numerical models, certain complex three-dimensional flow phenomena must still rely on physical model studies. Mathematical models cannot provide adequate solutions if physical processes involved are not completely known. Physical models are particularly attractive to investigate phenomena-involved sediment movements because many three-dimensional sediment processes are still unclear at this stage. Theoretically, there are numerous factors governing movable bed processes and it is nearly impossible to design model studies to obey all the model criteria. Sometimes, appropriate lightweight materials are difficult or too costly to obtain. Often, distorted models are used due to the limitation of available space and the requirement for greater vertical flow depth to investigate vertical differences of various parameters. The turbulence level in the model may also be maintained at a sufficient level to reproduce a similar flow pattern in the prototype. Frequently, engineers are forced to employ distorted models that cannot be designed to satisfy all governing criteria correctly. Thus each hydraulic laboratory has developed its own rules for model testing and a great deal of experience is needed to interpret model results.
This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory.
This technical book considers the application side of LDA techniques. Starting from the basic theories that are crucial for each LDA user, the main subject of the book is focused on diverse application methods. In details, it deals with universal methodical techniques that have been mostly developed in the last 15 years. The book thus gives for the first time an application reference for LDA users in improving the optical conditions and enhancing the measurement accuracies. It also provides the guidelines for simplifying the measurements and correcting measurement errors as well as for clarifying the application limits and extending the application areas of LDA techniques. Beside the treatments of some traditional optical and flow mechanical features influencing the measurement accuracies, the book shows a broad spectrum of LDA application methods in the manner of measuring the flow turbulence, resolving the secondary flow structures, and quantifying the optical aberrations at measurements of internal flows etc.. Thus, it also supports the further developments of both the hard- and software of LDA instrumentations.
This book (Vol. II) presents select proceedings of the first Online International Conference on Recent Advances in Computational and Experimental Mechanics (ICRACEM 2020) and focuses on theoretical, computational and experimental aspects of solid and fluid mechanics. Various topics covered are computational modelling of extreme events; mechanical modelling of robots; mechanics and design of cellular materials; mechanics of soft materials; mechanics of thin-film and multi-layer structures; meshfree and particle based formulations in continuum mechanics; multi-scale computations in solid mechanics, and materials; multiscale mechanics of brittle and ductile materials; topology and shape optimization techniques; acoustics including aero-acoustics and wave propagation; aerodynamics; dynamics and control in micro/nano engineering; dynamic instability and buckling; flow-induced noise and vibration; inverse problems in mechanics and system identification; measurement and analysis techniques in nonlinear dynamic systems; multibody dynamical systems and applications; nonlinear dynamics and control; stochastic mechanics; structural dynamics and earthquake engineering; structural health monitoring and damage assessment; turbomachinery noise; vibrations of continuous systems, characterization of advanced materials; damage identification and non-destructive evaluation; experimental fire mechanics and damage; experimental fluid mechanics; experimental solid mechanics; measurement in extreme environments; modal testing and dynamics; experimental hydraulics; mechanism of scour under steady and unsteady flows; vibration measurement and control; bio-inspired materials; constitutive modelling of materials; fracture mechanics; mechanics of adhesion, tribology and wear; mechanics of composite materials; mechanics of multifunctional materials; multiscale modelling of materials; phase transformations in materials; plasticity and creep in materials; fluid mechanics, computational fluid dynamics; fluid-structure interaction; free surface, moving boundary and pipe flow; hydrodynamics; multiphase flows; propulsion; internal flow physics; turbulence modelling; wave mechanics; flow through porous media; shock-boundary layer interactions; sediment transport; wave-structure interaction; reduced-order models; turbo-machinery; experimental hydraulics; mechanism of scour under steady and unsteady flows; applications of machine learning and artificial intelligence in mechanics; transport phenomena and soft computing tools in fluid mechanics. The contents of these two volumes (Volumes I and II) discusses various attributes of modern-age mechanics in various disciplines, such as aerospace, civil, mechanical, ocean engineering and naval architecture. The book will be a valuable reference for beginners, researchers, and professionals interested in solid and fluid mechanics and allied fields.
Current research fields in science and technology were presented and discussed at the EKC2009, informing about the interests and directions of the scientists and engineers in EU countries and Korea. The Conference has emerged from the idea of bringing together EU and Korea to get to know each other better, especially in fields of science and technology.
Crystal growth, casting, soldering, welding, high-energy surface treatment, nuclear safety systems and geophysical flows are just a few examples where solidification and convection occur together. These processes are interactive on micro- and macroscales: flow affects the distribution of heat and species and hence the freezing process, while solidification evolves flow boundaries, as in crusting, for example, and hence can radically alter the convection. Mathematical modellers, experimentalists and applied scientists were invited to this colloquium with the aim of consolidating our understanding of such interactions, of identifying key outstanding issues, and of developing new approaches in this important area of fundamental research. Both invited and contributed papers focus on both fundamental and technologically relevant problems.
This book presents the new discovery of the origin of turbulence from Navier-Stokes equations. The fully developed turbulence is found to be composed of singularities of flow field. The mechanisms of flow stability and turbulent transition are described using the energy gradient theory, which states all the flow instability and breakdown resulted from the gradient of the total mechanical energy normal to the flow direction. This approach is universal for flow instability in Newtonian flow and non-Newtonian flow. The theory has been used to solve several problems, such as plane and pipe Poiseuille flows, plane Couette flow, Taylor-Couette flow, flows in straight coaxial annulus, flows in curved pipes and ducts, thermal convection flow, viscoelastic flow, and magnet fluid flow, etc. The theory is in agreement with results from numerical simulations and experiments. The analytical method used in this book is novel and is different from the traditional approaches. This book includes the fundamental basics of flow stability and turbulent transition, the essentials of the energy gradient theory, and the applications of the theory to several practical problems. This book is suitable for researchers and graduate students.
This book addresses the hydrostatics and stability of ships and other floating marine structures - a fundamental aspect of naval architecture and offshore engineering for naval architects and marine engineers. It starts from the most basic concepts, assuming that the reader has no prior knowledge of the subject. By presenting the topic in a methodical and step-by-step manner, the book helps students to enhance their understanding, while also providing valuable guidelines for lecturers teaching related courses.
This book comprises the select proceedings of the International Conference on Recent Trends in Developments of Thermofluids and Renewable Energy (TFRE 2020). The major topics covered include aerodynamics, alternate energy, bio fuel, bio heat transfer, computational fluid dynamics, control mechanism for constant power generation, and energy storage. The book also discusses latest developments in the fields of electric vehicles, hybrid power systems, and solar and renewable energy. Given the scope of its contents, this book will be useful for students, researchers, and professionals interested in the field of thermofluids and renewable energy resources.
This multi-disciplinary book presents the most recent advances in exergy, energy, and environmental issues. Volume 2 focuses on fundamentals in the field and covers current problems, future needs, and prospects in the area of energy and environment from researchers worldwide. Based on some selected lectures from the Eleventh International Exergy, Energy and Environmental Symposium (IEEES-11) and complemented by further invited contributions, this comprehensive set of contributions promote the exchange of new ideas and techniques in energy conversion and conservation in order to exchange best practices in "energetic efficiency." Included are fundamental and historical coverage of the green transportation and sustainable mobility sectors, especially regarding the development of sustainable technologies for thermal comforts and green transportation vehicles. Furthermore, contributions on renewable and sustainable energy sources, strategies for energy production, and the carbon-free society constitute an important part of this book.
The idea of organising a colloquium on turbulence emerged during the sabbatical leave of Prof. Arkady Tsinober in Zurich. New experimental observations and the insight gained through direct numerical simulations have been stimulating research in turbulence and are leading to the developments of new concepts. The organisers felt the necessity to bring together researchers who have contributed significantly to the advances in this field in a colloquium in which the current achievements and the future development in the theoretical, numerical and experimental approaches would be discussed. The main emphasis of the colloquium was put on discussions. These discussions led to an interesting and exciting exchange of ideas, but also involved its very laborious transcription onto paper. It was due to the personal efforts of Mrs. A. Vyskocil, Dr. N. Malik and Dr. X. Studerus that this work could be completed. The colloquium was held in the relaxed atmosphere of the Centro Stefano Franscini in Monte Verita near Ascona, a locality of exceptional natural beauty, which was put at our disposal by the Swiss Federal Institute of Technology. We would like to express our gratitude for this generous financial and logistic support, which contributed considerably to the success of the colloquium. Zurich, April 1993 Th. Dracos, A. Tsinober Participants Adrian, R. J. Kambe, T. Antonia, R. A. Kit,E. Aref, H. Landahl, M. T. Betchov, R. Lesieur, M. Bewersdorff, H. -W. Malik, N. Castaing, B. Moffatt, H. K. Chen, J. Moin,P. Dracos, T. Mullin, T. Frisch, U. Novikov, E. A.
This book presents a unified view of image motion analysis under the variational framework. Variational methods, rooted in physics and mechanics, but appearing in many other domains, such as statistics, control, and computer vision, address a problem from an optimization standpoint, i.e., they formulate it as the optimization of an objective function or functional. The methods of image motion analysis described in this book use the calculus of variations to minimize (or maximize) an objective functional which transcribes all of the constraints that characterize the desired motion variables. The book addresses the four core subjects of motion analysis: Motion estimation, detection, tracking, and three-dimensional interpretation. Each topic is covered in a dedicated chapter. The presentation is prefaced by an introductory chapter which discusses the purpose of motion analysis. Further, a chapter is included which gives the basic tools and formulae related to curvature, Euler Lagrange equations, unconstrained descent optimization, and level sets, that the variational image motion processing methods use repeatedly in the book.
Hydrostatic Transmissions and Actuators takes a pedagogical approach and begins with an overview of the subject, providing basic definitions and introducing fundamental concepts. Hydrostatic transmissions and hydrostatic actuators are then examined in more detail with coverage of pumps and motors, hydrostatic solutions to single-rod actuators, energy management and efficiency and dynamic response. Consideration is also given to current and emerging applications of hydrostatic transmissions and actuators in automobiles, mobile equipment, wind turbines, wave energy harvesting and airplanes. End of chapter exercises and real world industrial examples are included throughout and a companion website hosting a solution manual is also available. Hydrostatic Transmissions and Actuators is an up to date and comprehensive textbook suitable for courses on fluid power systems and technology, and mechatronics systems design. |
You may like...
Surviving Your Dissertation - A…
Kjell Erik Rudestam, Rae R. Newton
Hardcover
R5,541
Discovery Miles 55 410
Cop Under Cover - My Life In The Shadows…
Johann van Loggerenberg
Paperback
Rogue - The Inside Story Of SARS's Elite…
Johann van Loggerenberg, Adrian Lackay
Paperback
(2)R347 Discovery Miles 3 470
Experimental Philosophy - Volume 2
Joshua Knobe, Shaun Nichols
Hardcover
R3,849
Discovery Miles 38 490
Wittgenstein's Tractatus - History and…
Peter Sullivan, Michael Potter
Hardcover
R2,227
Discovery Miles 22 270
The Profiler Diaries 2 - From Crime…
Gerard Labuschagne
Paperback
(2)
Recent Advances in Parallel Virtual…
Franck Capello, Thomas Herault, …
Paperback
R1,440
Discovery Miles 14 400
|