![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
Part textbook, part exploratory work, this book aims to raise the awareness of students, physicists, and engineers in turbulence on the modeling of gravitationally induced turbulent mixing flows as produced, for instance, by Rayleigh-Taylor instabilities. The discussion is centered on the differences between single-fluid and two-fluid approaches, and it is illustrated with a 0D analysis of two specific elementary models in common use. Important deviations are shown to appear on many features, among others the prominence of directed energy, the simultaneous restitution of test cases, the responses to variable acceleration and shocks, and the behavior of various length scales.
The fifth ERCOFfAC workshop 'Direct and Large-Eddy Simulation-5' (DLES-5) was held at the Munich University of Technology, August 27-29, 2003. It is part of a series of workshops that originated at the University of Surrey in 1994 with the intention to provide a forum for presentation and dis cussion of recent developments in the field of direct and large-eddy simula tion. Over the years the DLES-series has grown into a major international venue focussed on all aspects of DNS and LES, but also on hybrid methods like RANSILES coupling and detached-eddy simulation designed to provide reliable answers to technical flow problems at reasonable computational cost. DLES-5 was attended by 111 delegates from 15 countries. Its three-day pro gramme covered ten invited lectures and 63 original contributions partially pre sented in parallel sessions. The workshop was financially supported by the fol lowing companies, institutions and organizations: ANSYS Germany GmbH, AUDI AG, BMW Group, ERCOFfAC, FORTVER (Bavarian Research Asso ciation on Combustion), JM BURGERS CENTRE for Fluid Dynamics. Their help is gratefully acknowledged. The present Proceedings contain the written versions of nine invited lectures and fifty-nine selected and reviewed contributions which are organized in four parts: 1 Issues in LES modelling and numerics 2 Laminar-turbulent transition 3 Turbulent flows involving complex physical phenomena 4 Turbulent flows in complex geometries and in technical applications.
Micro and nano-fluidics concerns fluid dynamics occurring in devices or flow configurations with minimum design length measured in micrometers or smaller. The behavior of fluids at these scales is quite different from that at the macroscopic level due to the presence of surface tension effects, wetting phenomena, Brownian diffusion and hydrodynamic interactions with immersed particles and microstructures. These effects cannot be generally represented in a classical homogeneous continuum framework. However, this triggers the development of new tools to investigate and simulate problems at the meso-scopic level. This book contains a collection of works presented at the IUTAM Symposium on Advances on Micro and Nano-fluidics held in Dresden in 2007. It covers several subjects of wide interest for micro and nano-fluidics applications focusing on both, analytical and numerical approaches. Topics covered in particular include multi-scale particle methods for numerical simulations, liquid-wall interactions and modeling approaches, modeling of immersed nano-scale structures, organized flow behavior at micro and nano-scales, and methods for control of micro- and nano-scale flows.
Particle Image Velocimetry (PIV) is a non-intrusive optical measurement technique which allows capturing several thousand velocity vectors within large flow fields instantaneously. Today, the PIV technique has spread widely and differentiated into many distinct applications, from micro flows over combustion to supersonic flows for both industrial needs and research. Over the past decade the measurement technique and the hard- and software have been improved continuously so that PIV has become a reliable and accurate method for "real life" investigations. Nevertheless there is still an ongoing process of improvements and extensions of the PIV technique towards 3D, time resolution, higher accuracy, measurements under harsh conditions and micro- and macroscales. This book gives a synopsis of the main results achieved during the EC-funded network PivNet 2 as well as a survey of the state of the art of scientific research using PIV techniques in different fields of application.
In the last 25 years, one of the most striking advances in Fluid Mecha nics was certainly the discovery of coherent structures in turbulence: lab oratory experiments and numerical simulations have shown that most turbulent flows exhibit both spatially-organized large-scale structures and disorganized motions, generally at smaller scales. The develop ment of new measurement and visualization techniques have allowed a more precise characterization and investigation of these structures in the laboratory. Thanks to the unprecedented increase of computer power and to the development of efficient interactive three-dimensional colour graphics, computational fluid dynamicists can explore the still myste rious world of turbulence. However, many problems remain unsolved concerning the origin of these structures, their dynamics, and their in teraction with the disorganized motions. In this book will be found the latest results of experimentalists, theoreticians and numerical modellers interested in these topics. These coherent structures may appear on airplane wings or slender bodies, mixing layers, jets, wakes or boundary-layers. In free-shear flows and in boundary layers, the results presented here highlight the intense three-dimensional character of the vortices. The two-dimensional large scale eddies are very sensitive to three-dimensional perturbations, whose amplification leads to the formation of three-dimensional coherent vorti cal structures, such as streamwise, hairpin or horseshoe vortex filaments. This book focuses on modern aspects of turbulence study. Relations between turbulence theory and optimal control theory in mathematics are discussed. This may have important applications with regard to, e. g. , numerical weather forecasting.
This volume contains results of a European project on Large Eddy Simulation (LES) of the flow around an airfoil. The main objective of the LESFOIL project was to assess the suitability of LES for airfoil flow. In conclusion, preliminary work was carried out such as development of numerical methods, and subgrid modelling in geometrically simple flows such as fully developed channel flow and periodic flow in a channel with a curved hill-shaped surface. Accurate LES of wall-bounded flow requires fine cells in the near-wall region in all coordinate directions. In an attempt to release this constraint, a large part of the LESFOIL project was aimed at developing and validating different approximate near-wall treatments. In the second half of the book, several LESs of the flow around the Aerospatiale-A airfoil are presented, using different numerical methods, grids, SGS models and near-wall treatments.
Modelling Fluid Flow presents invited lectures, workshop summaries and a selection of papers from a recent international conference CMFF '03 on fluid technology. The lectures follow the current evolution and the newest challenges of the computational methods and measuring techniques related to fluid flow. The workshop summaries reflect the recent trends, open questions and unsolved problems in the mutually inspiring fields of experimental and computational fluid mechanics. The papers cover a wide range of fluids engineering, including reactive flow, chemical and process engineering, environmental fluid dynamics, turbulence modelling, numerical methods, and fluid machinery.
This third issue on "progress in turbulence" is based on the third ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Researchers from the engineering and physical sciences gathered to present latest results on the rather notorious difficult and essentially unsolved problem of turbulence. This challenge is driving us in doing basic as well as applied research. Clear progress can be seen from these contributions in different aspects. New - phisticated methods achieve more and more insights into the underlying compl- ity of turbulence. The increasing power of computational methods allows studying flows in more details. Increasing demands of high precision large turbulence - periments become aware. In further applications turbulence seem to play a central issue. As such a new field this time the impact of turbulence on the wind energy conversion process has been chosen. Beside all progress our ability to numerically calculate high Reynolds number turbulent flows from Navier-Stokes equations at high precision, say the drag co- ficient of an airfoil below one percent, is rather limited, not to speak of our lack of knowledge to compute this analytically from first principles. This is rather - markable since the fundamental equations of fluid flow, the Navier-Stokes eq- tions, have been known for more than 150 years.
Current research fields in science and technology were presented and discussed at the EKC2008, informing about the interests and directions of the scientists and engineers in EU countries and Korea. The Conference has emerged from the idea of bringing together EU and Korea to get to know each other better, especially in fields of science and technology. The focus of the conference is put on the topics: Computational Fluid Dynamics, Mechatronics and Mechanical Engineering, Information and Communications Technology, Life and Natural Sciences, Energy and Environmental Technology.
This textbook provides a coherent and structured overview of fluid mechanics, a discipline concerned with many natural phenomena and at the very heart of the most diversified industrial applications and human activities. The balance between phenomenological analysis, physical conceptualization and mathematical formulation serve both as a unifying educational marker and as a methodological guide to the three parts of the work. The thermo-mechanical motion equations of a homogeneous single-phase fluid are established, from which flow models (perfect fluid, viscous) and motion classes (isovolume, barotropic, irrotational, etc.) are derived. Incompressible, potential flows and compressible flows, both in an isentropic evolution and shock, of an ideal inviscid fluid are addressed in the second part. The viscous fluid is the subject of the last one, with the creeping motion regime and the laminar, dynamic and thermal boundary layer. Historical perspectives are included whenever they enrich the understanding of modern concepts. Many examples, chosen for their pedagogical relevance, are dealt with in exercises. The book is intended as a teaching tool for undergraduate students, wishing to acquire a first command of fluid mechanics, as well as graduates in advanced courses and engineers in other fields, concerned with completing what is sometimes a scattered body of knowledge.
This IUTAM Symposium was the first international conference on asymptotic methods for turbulent shear flows. It was the aim of this Symposium to bring together the experts and research workers to discuss recent work in this field. There was general consensus among the participants of the Symposium, that the asymptotic methods provide powerful tool for turbulence modelling, which ought to be used more intensively in practice in addition to the numerical meth- ods. This was the Scientific Committee: K. Gersten (Germany, Chairman) A. Kluwick (Austria) J. - P. Guiraud (France) F. T. Smith (United Kingdom) V. V. Sychev (Russia) S. Kida (Japan) H. K. Moffat (United Kingdom) J. D. A. Walker (USA) We are very thankful that the Symposium was sponsored by the following organizations: * International Union of Theoretical and Applied Mechanics * Deutsche Forschungsgemeinschaft, Bonn * Gesellschaft der Freunde der Ruhr-Universitiit, Bochum * Institut fur Energie-, System-, Material- und Umwelttechnik e. V. , Bochum * Ruhrgas AG, Essen * Dresdner Bank, Bochum * Kluwer Academic Publishers, Dordrecht * Vieweg-Verlag, Wiesbaden We thank in particular the Rektor of the Ruhr University, Professor M. Bormann, who was host of the Symposium and made possible that the Symposium could take place on the campus. The following persons, who helped in organizing the Symposium and made sure that everything was working smoothly and efficiently during the Symposium, de- serve our special thanks: Bernard Rocklage, Gerta Marliani, Petra Berkner and Th.
This special issue of ZAMP is published to honor Paul M. Naghdi for his contributions to mechanics over the last forty years and more. It is offered in celebration of his long, productive career in continuum mechan ics; a career which has been marked by a passion for the intrinsic beauty of the subject, an uncompromising adherence to academic standards, and an untiring devotion to our profession. Originally, this issue was planned in celebration of Naghdi's 70th birthday, which occurred on 29 March 1994. But, as the papers were being prepared for the press, it became evident that the illness from which Professor Naghdi had been suffering during recent months was extremely serious. On 26 May 1994, a reception took place in the Department of Mechanical Engineering at Berkeley, at which Naghdi received The Berkeley Citation (which is given in lieu of an honorary degree) and where he was also presented with the Table of Contents of the present collection. Subse quently, he had the opportunity to read the papers in manuscript form. He was very touched that his colleagues had chosen to honor him with their fine contributions. The knowledge that he was held in such high esteem by his fellow scientists brought a special pleasure and consolation to him in his last weeks. On Saturday evening, 9 July 1994, Paul Naghdi succumbed to the lung cancer which he had so courageously endured.
With regard to both the environmental sustainability and operating efficiency demands, modern combustion research has to face two main objectives, the optimization of combustion efficiency and the reduction of pollutants. This book reports on the combustion research activities carried out within the Collaborative Research Center (SFB) 568 Flow and Combustion in Future Gas Turbine Combustion Chambers funded by the German Research Foundation (DFG). This aimed at designing a completely integrated modeling and numerical simulation of the occurring very complex, coupled and interacting physico-chemical processes, such as turbulent heat and mass transport, single or multi-phase flows phenomena, chemical reactions/combustion and radiation, able to support the development of advanced gas turbine chamber concepts"
This book comprises selected peer-reviewed proceedings of the International Conference on Applications of Fluid Dynamics (ICAFD 2018) organized by the School of Advanced Sciences, Vellore Institute of Technology, India, in association with the University of Botswana and the Society for Industrial and Applied Mathematics (SIAM), USA. With an aim to identify the existing challenges in the area of applied mathematics and mechanics, the book emphasizes the importance of establishing new methods and algorithms to address these challenges. The topics covered include diverse applications of fluid dynamics in aerospace dynamics and propulsion, atmospheric sciences, compressible flow, environmental fluid dynamics, control structures, viscoelasticity and mechanics of composites. Given the contents, the book is a useful resource for students, researchers as well as practitioners.
This book contains a collection of the main contributions from the third edition of the NICFD conference, organized by the Special Interest Group on Non-Ideal Compressible Fluid Dynamics (SIG-49). It provides insight on the latest research findings in the field of NICFD that are relevant to a number of engineering applications related to the conversion of renewable and waste energy sources, like organic Rankine cycles, supercritical CO2 cycle power plants, combustors operating with supercritical fluids, and heat pumps. The various chapters of the book document research encompassing theoretical, computational, and experimental aspects of the gas dynamics of non-ideal reactive and non-reactive flows and their impact for the design of internal flow components (turbomachinery, heat exchangers, combustors). Since the accurate calculation of fluid thermo-physical properties is of great concern in NICFD, all the chapters address this problem by describing state-of-the-art models for the characterization of the properties of pure fluids and mixtures.
This book introduces a holistic approach to ship design and its optimisation for life-cycle operation. It deals with the scientific background of the adopted approach and the associated synthesis model, which follows modern computer aided engineering (CAE) procedures. It integrates techno-economic databases, calculation and multi-objective optimisation modules and s/w tools with a well-established Computer-Aided Design (CAD) platform, along with a Virtual Vessel Framework (VVF), which will allow virtual testing before the building phase of a new vessel. The resulting graphic user interface (GUI) and information exchange systems enable the exploration of the huge design space to a much larger extent and in less time than is currently possible, thus leading to new insights and promising new design alternatives. The book not only covers the various stages of the design of the main ship system, but also addresses relevant major onboard systems/components in terms of life-cycle performance to offer readers a better understanding of suitable outfitting details, which is a key aspect when it comes the outfitting-intensive products of international shipyards. The book disseminates results of the EU funded Horizon 2020 project HOLISHIP.
The origins of turbulent ?ow and the transition from laminar to turbulent ?ow are the most important unsolved problems of ?uid mechanics and aerodynamics. - sides being a fundamental question of ?uid mechanics, there are numerous app- cations relying on information regarding transition location and the details of the subsequent turbulent ?ow. For example, the control of transition to turbulence is - pecially important in (1) skin-friction reduction of energy ef?cient aircraft, (2) the performance of heat exchangers and diffusers, (3) propulsion requirements for - personic aircraft, and (4) separation control. While considerable progress has been made in the science of laminar to turbulent transition over the last 30 years, the c- tinuing increase in computer power as well as new theoretical developments are now revolutionizing the area. It is now starting to be possible to move from simple 1D eigenvalue problems in canonical ?ows to global modes in complex ?ows, all - companied by accurate large-scale direct numerical simulations (DNS). Here, novel experimental techniques such as modern particle image velocimetry (PIV) also have an important role. Theoretically the in?uence of non-normality on the stability and transition is gaining importance, in particular for complex ?ows. At the same time the enigma of transition in the oldest ?ow investigated, Reynolds pipe ?ow tran- tion experiment, is regaining attention. Ideas from dynamical systems together with DNS and experiments are here giving us new insights.
During confined flow of bulk solids in silos some characteristic phenomena can be created, such as: sudden and significant increase of wall stresses, different flow patterns, formation and propagation of wall and interior shear zones, fluctuation of pressures and, strong autogenous dynamic effects. These phenomena have not been described or explained in detail yet. The main intention of the experimental and theoretical research presented in this book is to explain the above mentioned phenomena in granular bulk solids and to describe them with numerical FE models verified by experimental results.
This book is a collection of extended papers based on presentations given during the SIMHYDRO 2014 conference, held in Sophia Antipolis in June 2014. It focuses on the modeling and simulation of fast hydraulic transients, on 3D modeling, and on uncertainties and multiphase flows. The book explores both the limitations and performance of current models and presents the latest developments based on new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It addresses the interests of practitioners, stakeholders, researchers and engineers active in this field.
The threat of natural resource depletion due to high energy demands has become a key concern in both the developed and developing worlds. To alleviate these concerns, researchers around the world are exploring sustainable methods for generating energy. Innovative Solutions in Fluid-Particle Systems and Renewable Energy Management presents phenomenological, experimental, and theoretical research, as well as market criteria and business models concerning the development of small- and large-scale chemical and energy plants. Associating academic and industrial experiences, this book highlights current topics in sustainable energy management and development with an emphasis on obtaining liquid, gaseous, and solid fuels using residues and energetic biomasses. Academicians, researchers, and technology developers will find this book useful in furthering their own knowledge and research in this field. A pivotal publication in the field of engineering, this title covers a range of topics including, among others, cellulosic feedstock, agricultural biomass, fluid dynamics, gasification processes, energy extraction from raw materials, and environmental sustainability.
This volume contains eighteen reports on work, which has been conducted since 2000 in the Collaborative Research Programme "Numerical Flow Simulation" of the Centre National de la Recherche Scientifique (CNRS) and the Deutsche Forschungsgemeinschaft (DFG). French and German engineers and mathematicians present their joint research on the topics: "Development of Solution Techniques", "Crystal Growth and Melts", "Flows of Reacting Gases, Sound Generation" and "Turbulent Flows". In the background of their work is still the strong growth in the performance of super-computer architectures, which, together with large advances in algorithms, is opening vast new application areas of numerical flow simulation in research and industrial work. Results of this programme from the period 1996 to 1998 have been presented in NNFM 66 (1998), and NNFM75 (2001).
Mobile particulate systems involve the mechanics, flow and transport properties of mixtures of fluids and solids. These systems are intrinsic to the rheology of emulsions and suspensions, flocculation and aggregation, sedimentation and fluidization, flow of granular media, nucleation and growth of small particles, segregation, attrition and solidification processes. Its diversity means that the area has been studied by a number of different disciplines (e.g. chemical or civil engineering, mechanics, hydrodynamics, geophysics, condensed matter and statistical physics, etc.). Mobile Particulate Systems features general, orientational lectures and advanced topics, covering state of the art approaches to the study of suspensions, fluidized beds, sedimentation and granular flows.
This book is concerned with the methods of solving the nonlinear Boltz mann equation and of investigating its possibilities for describing some aerodynamic and physical problems. This monograph is a sequel to the book 'Numerical direct solutions of the kinetic Boltzmann equation' (in Russian) which was written with F. G. Tcheremissine and published by the Computing Center of the Russian Academy of Sciences some years ago. The main purposes of these two books are almost similar, namely, the study of nonequilibrium gas flows on the basis of direct integration of the kinetic equations. Nevertheless, there are some new aspects in the way this topic is treated in the present monograph. In particular, attention is paid to the advantages of the Boltzmann equation as a tool for considering nonequi librium, nonlinear processes. New fields of application of the Boltzmann equation are also described. Solutions of some problems are obtained with higher accuracy. Numerical procedures, such as parallel computing, are in vestigated for the first time. The structure and the contents of the present book have some com mon features with the monograph mentioned above, although there are new issues concerning the mathematical apparatus developed so that the Boltzmann equation can be applied for new physical problems. Because of this some chapters have been rewritten and checked again and some new chapters have been added."
This book provides an elementary introduction to one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner, with artificial viscosity introduced into the numerical calculations in order to deal with shocks. This treatment of the subject is focused on the finite-difference approach to solve the coupled differential equations of fluid flow and presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This expanded second edition features substantial new material on sound wave parameters, Riemann's method for numerical integration of the equations of motion, approximate analytical expressions for weak shock waves, short duration piston motion, numerical results for shock wave interactions, and new appendices on the piston withdrawal problem and numerical results for a closed shock tube. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.
During the life of a dam, changes in safety standards, legislation and land use will inevitably occur, and functional deterioration may also appear. To meet these challenges, these Proceedings from a panel of international experts assess, define and re-evaluate the design criteria for the construction of dams and the many attendant issues in on-going maintenance and management. Authors include international specialists: academics, professionals and those in local government, utilities and suppliers. Practitioners from these same fields will find the book a useful tool in acquiring a comprehensive knowledge of managing and retrofitting dams, so that they can continue to meet society's needs. |
![]() ![]() You may like...
Finite Elements and Fast Iterative…
Howard Elman, David Silvester, …
Hardcover
R4,587
Discovery Miles 45 870
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Magnetic Bearings and Bearingless Drives
Akira Chiba, Tadashi Fukao, …
Hardcover
R2,547
Discovery Miles 25 470
|