![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > General issues > Medical equipment & techniques > Medical research
The CCN family of genes currently comprises six secreted proteins (designated CCN16 i.e., Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, and WISP3/CCN6) showing a strikingly conserved primary structure, with four modules sharing partial identity with IGF binding proteins, Von Willebrand protein, thrombospondin and several matricellular proteins and growth factors. The current view is that CCN proteins modulate signaling pathways that involve regulatory components of the extracellular matrix. As such, they likely act as a central hub in the regulation of mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. The 5th international workshop on the CCN family of genes, that was held in Toronto in 2008 brought together scientists from around the world who have an interest in the biological roles of this emerging family of proteins. On an educational point of view, the workshop was a unique place for an efficient diffusion of scientific information. The present book comprises a series of selected manuscripts that are based on the original communications that were presented at the meeting by worldwide leaders in the field of CCN biology. All major aspects of CCN proteins biology in both normal and pathological conditions are covered in this volume, from structure-functions analysis up to the involvement of CCN proteins in complex physiological functions. In addition to reports that support the Yin-Yang concept of CCN proteins driving opposite effects on the same biological process, this book also comprises several contributions that point to CCN proteins as amenable targets for therapeutic manipulation of disease processes. Together with the special issue of Journal of Cell Communication and Signaling in which authors have extended on the original data presented at the meeting, the present Proceedings provide an instant picture and unique update of the state of the art in the CCN field.
This is the first book entirely dedicated to Intravital Microscopy. It provides the reader with a broad overview of the main applications of Intravital Microscopy in various areas of the biomedical field. The book contains accurate descriptions of the state of the art methodologies used to image various organs at different level of resolution, ranging from whole tissue down to sub-cellular structures. Moreover, it is an extremely valuable guide to scientists that want to adopt this powerful technique and do not have experience with animal models and microscopy.
Diseases, the second volume in the four volume set, The Mouse in Biomedical Research, departs from the first edition, by discussing specific disease causing microorganisms, rather than the format used in the first edition which discussed infectious diseases affecting specific organs and tissues. As such, the volume consists of 26 chapters subdivided into RNA viruses and DNA viruses, as well as bacterial, mycotic, and parasitic infections. These chapters not only provide updates on pathogenesis, epidemiology and prevention of previously recognized murine pathogens, but also include information on newly recognized disease-causing organisms: mouse parvovirus, cilia associated respiratory bacilli and Helicobacter spp. A separate category, consisting of 3 chapters, discusses zoonoses, tumor pathology of genetically engineered mice, and spontaneous diseases in commonly used mouse strains.
This is the second of three planned volumes in the Methods in
Enzymology series on the topic of stem cells. This volume is a
unique anthology of stem cell techniques focusing on adult stem
cells, and written by experts from the top laboratories in the
world. The contributors not only have hands-on experience in the
field but often have developed the original approaches that they
share with great attention to detail. The chapters provide a brief
review of each field followed by a "cookbook" and handy
illustrations. The collection of protocols includes the isolation
and maintenance of stem cells from various species using
"conventional" and novel methods, such as derivation of ES cells
from single blastomeres, differentiation of stem cells into
specific tissue types, isolation and maintenance of somatic stem
cells, stem cell-specific techniques and approaches to tissue
engineering using stem cell derivatives. The reader will find that
some of the topics are covered by more than one group of authors
and complement each other. Comprehensive step-by-step protocols and
informative illustrations can be easily followed by even the least
experienced researchers in the field, and allow the setup and
troubleshooting of these state-of-the-art technologies in other
laboratories.
History, Wild Mice, and Genetics, the first volume in the four volume set, The Mouse in Biomedical Research, provides information about the history, biology and genomics of the laboratory mouse (Mus musculus), as well as basic information on maintenance and use of mouse stocks. Mouse origins and relationships are covered in chapters on history, evolutionary taxonomy and wild mice. Genetics and genomics of the mouse are covered in chapters on genetic nomenclature, gene mapping, cytogenetics and the molecular organization of the mouse genome. Maintenance of laboratory mice is described in chapters on breeding systems for various types of strains and stocks and genetic monitoring. Use of the mouse as a model system for basic biomedical research is described in chapters on chemical mutagenesis, gene trapping, pharmacogenetics and embryo manipulation. The information in Volume 1 serves as a primer for scientists new to the field of mouse research.
The book is a history of the McKnight Endowment Fund for
Neuroscience and an assessment of its effectiveness in advancing
neuroscience. The book discusses the Fund's early and steady
commitment to basic science as well as it's tradition of leveraging
relatively modest dollars to make a big difference in careers and
the field overall.
SocialBonding,aProductofEvolution: anIntroductiontotheVolume Mechanisms underlying reproductive and maternal functions or coping represent the initialstructuringforcebehindmanysocialbehaviors.Theyareaccompaniedbysel- tivehormonalenvironmentsaimedatfacilitatingor stabilizingthem.Sexandadrenal steroids are major players in the regulation of reproductive functions and coping challenges, but other hormones also participate in a variety of social behaviors (in particular,oxytocinandvasopressin,twophylogeneticallyveryoldmoietiesoriginally associated with maternal care and water balance) and are receiving increasing att- tion. Their role is highlighted in the present volume, which gathers contributions to theColloqueMedicineetRecherche"HormonesandSocialBehavior"organizedbythe FondationIPSENinDecember 2007. Whatisthekeytounderstandingtherationaleofhormonalsubstratesofbehavior? Evolution, of course. Higher manifestations of social behavior have evolved from - productivebehavior,characterizedbyErnstMayras"theleadingedgeofevolutionary change." As formulated by one contributor to thisvolume, however, "the evolutionary increase in neocortex seen in primates has induced a signi?cant emancipation of - havior from hormonal determinants, and in parallel, an increasing role for intelligent socialstrategies"(Keverne 2008). In so-called "lower" mammalian animals, many social behaviors are closely - pendent upon the olfactory system, a component of autonomous regulation of such importancethatitexpressesalargeproportionofallreceptorgenespresentinthebrain. Whenonelooksat"higher"mammalssuchasprimates,olfactorycontrolbecomesless stringent. Olfactory structures exhibit the same number of receptor genes, but a large number are transformed into non-coding "pseudogenes." In parallel, hormones i- tially targeted on physiological functions become increasingly associated with more diversi?edcognitivefunctions.
This book summarizes the main surface analysis techniques that are being used to study biological specimens/systems. The compilation of chapters in this book highlight the benefits that surface analysis provides. The outer layer of bulk solid or liquid samples is referred to as the surface of the sample/material. At the surface, the composition, microstructure, phase, chemical bonding, electronic states, and/or texture is often different than that of the bulk material. The outer surface is where many material interactions/reactions take place. This is especially true biomaterials which may be fabricated into bio-devices and in turn implanted into tissues and organs. Surfaces of biomaterials (synthetic or modified natural materials) are of critical importance since the surface is typically the only part of the biomaterial/bio-device that comes in contact with the biological system. Analytical techniques are required to characterize the surface of biomaterials and quantify their impact in real-world biological systems. Surface analysis of biological materials started in the 1960 s and the number of researchers working in this area have increased very rapidly since then, a number of advances have been made to standard surface analytical instrumentation, and a number of new instruments have been introduced. "
Presenting topics from the basic application of molecular genetics to more complex gene expression analysis using different models of study, this detailed volume explores asthma through the lens of genetics, considered to play an essential role in the etiopathogenesis of the disease. Since asthma is a complex disease, this book is designed to provide a review of the most useful techniques with examples of their applications in specific laboratory protocols. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Molecular Genetics of Asthma serves as an ideal guide to researchers investigating this vital field of study.
Over the past 10 years, work on acute promyelocytic leukemia (APL) has become the paradigm of translational research that began with the discovery of a recurrent chromosomal translocation, followed by the identification of the genes and proteins involved, finding their molecular functions in transcriptional control, establishing mouse models and culminating in the development of targeted therapy.
The microbial world has given us many surprises including microbes that grow under extremely harsh conditions (122C at 40 MPa), novel metabolisms such as the uranium and perchlorate reduction, and novel chemicals that can be used to control diseases. We continually face new and difficult problems such as the need to transition to more carbon-neutral energy sources and to find eco-friendly chemicals and to find new drugs to treat disease. Will it be possible to tap into the seemingly limitless potential of microbial activity to solve our current and future problems?The answer to this question is probably yes. We are already looking to the microbial world to provide new energy sources, green chemicals to replace those made from petroleum, and new drugs to fight disease. To help us along these paths, we are deciphering how microorganisms interact with each other. We know that microbial populations interact and communicate with each other. The language that microbes use is chemical where small molecules are exchanged among different microbial cells. Sometimes, these chemicals suppress activities of competitors and could be used as antibiotics or may have other therapeutic uses. Other times, the chemicals stimulate complex responses in microbial populations such as fruiting body or biofilm formation. By understanding the conversation that microbes are having among themselves, e. g.
Reviews in Plasmonics is a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the years progress in Plasmonics and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics.
The research field of biobanks and tissue research is highly promising. Many projects around the globe are involved in the collection of human tissue and health data for research purposes. These initiatives are driven by the perspective of decisive breakthroughs in the knowledge of the genetic pathways involved in widespread diseases. However, there are considerable ethical and legal challenges to be considered as well. These challenges encompass the use of body material for research purposes, the misuse of genetic and other health data by third parties, trust in science and medicine, concerns regarding privacy, use of genetic data for forensic applications by the state and the police, and regulatory issues. This volume is divided into three parts: the inclusion of the public, the rights of donors and patients, examples and recommendations for the future of tissue research. It presents a comprehensive overview of the most important topics in the field by renowned scholars in medical ethics and biolaw.
We present an in-depth description of resistance to targeted therapies in breast cancer. Targeted therapies discussed here include those used to treat ER+ or Her2+ breast cancers (i.e., Tamoxifen or trastuzumab) or those targeting signaling pathways aberrantly activated in triple negative breast cancer (i.e., EGFR and Wnt signaling). We have also provided an overview of standard of care as an introduction into the importance of targeted therapy. It is our hope that this volume gives an insight into the landscape of breast cancer treatment, the challenges of targeted therapy, and a glimpse into the future of breast cancer therapy.
Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contribute to biomedical industry. This is a truly interdisciplinary field and convergence technology where the communication between different disciplines is the most challenging issue for the success of the great works. One of the first steps to promote the communications in this convergence technology would be teaching the basics of these different fields to the researchers in a plain language with the help of "Convergence of Terahertz Science in Biomedical Systems" which is considered to be 3-4th year college students or beginning level of graduate students. Therefore, this type of book can be used by many people who want to enter or understand this field. Even more it can be used for teaching in universities or research institutions.
This second edition emphasizes the environmental impact on reproduction, with updated chapters throughout as well as complete new chapters on species such as sharks and rays. This is a wide-ranging book that will be of relevance to anyone involved in species conservation, and provides critical perspectives on the real utility of current and emerging reproductive sciences.Understanding reproductive biology is centrally important to the way many of the world's conservation problems should be tackled. Currently the extinction problem is huge, with up to 30% of the world's fauna being expected to disappear in the next 50 years. Nevertheless, it has been estimated that the global population of animals in zoos encompasses 12,000 - 15,000 species, and we anticipate that every effort will be made to preserve these species for as long as possible, minimizing inbreeding effects and providing the best welfare standards available. Even if the reproductive biology community cannot solve the global biodiversity crisis for all wild species, we should do our best to maintain important captive populations. Reproductive biology in this context is much more than the development of techniques for helping with too little or too much breeding. While some of the relevant techniques are useful for individual species that society might target for a variety of reasons, whether nationalistic, cultural or practical, technical developments have to be backed up by thorough biological understanding of the background behind the problems.
This volume provides protocols to successfully apply cutting-edge technologies to characterize the biology of T cells at an unprecedented level of complexity. Chapters guide readers through flow cytometry and fluorescence-activated cell sorting, the behaviour of single T cells after adoptive cell transfer (ACT), single cell gene expression by multiplex PCR, lentiviral transduction approaches, protocols to derive large numbers of early-differentiated memory T cells by using dedicated cytokines cocktails, approaches to measure telomerase activity in terminally differentiated T cells, and approaches to define Treg cells at the phenotypic and functional level. The final part of the book is dedicated to the analysis of the differentiation and effector functions of innate T cells, namely the well-known / T cells, and the recently identified CD8+ mucosal associated invariant T (MAIT) cells. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, T-Cell Differentiation: Methods and Protocols aims to provide protocols that are fundamental to monitor the T cell compartment at the level of single cells in pathological and immunotherapy conditions.
General Principles of Tumor Immunotherapy: Basic and Clinical Applications of Tumor Immunology brings together the world's leading authorities on tumor immunology. This book describes the basic immunology principles that form the foundation of understanding how the immune system recognizes and rejects tumor cells. The role of the innate and adaptive immune responses is discussed and the implications of these responses for the design of clinical strategies to combat cancer are illustrated through both experimental clinical trials and review of current standard of care therapeutic agents. This information will be invaluable to both students of immunology and cancer research and practicing physicians who have patients with cancer. The book provides a comprehensive overview of the field, demonstrates how advances in basic immunology can and are being applied to cancer, and describes the current status of approved immunotherapy regimens.
This book offers pertinent basic science information on strategies
used for the rational design and discovery of novel anticancer
agents, and, in addition, translational studies involving clinical
trial design and execution with these novel, mostly cytostatic
agents. This book covers basic science strategies that are being
used in drug discovery and preclinical evaluation focused on novel
molecular targets, as well as clinical trial methodology including
clinical pharmacokinetics and imaging to address issues of efficacy
evaluation of the new, relatively non-cytotoxic anticancer agents.
In recent years, human studies have made enormous contributions towards an understanding of the genetic basis of diabetes mellitus; however, most of the experimentation needed for the invention and testing of novel therapeutic approaches cannot be performed in humans. Thus, there is no alternative to appropriate animal models. In Animal Models in Diabetes Research, expert researchers explore the current status of the most important models and procedures in order to provide a timely resource in experimental diabetology. The first half of the volume serves as a comprehensive overview on our current knowledge of the pathogenesis and pathophysiology of diabetes in animal models through a series of reviews in model strains. The book then continues with vital, established protocols that are employed in the characterization and study of animal models of diabetes. As a volume in the highly successful Methods in Molecular Biology (TM) series, this work contains the type of detailed description and key implementation advice necessary to achieve successful results. Authoritative and cutting-edge, Animal Models in Diabetes Research delivers essential content that will be an important resource to advance diabetes research in the years to come.
This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.
The proposed volume provides both fundamental and detailed information about the computational and computational-experimental studies which improve our knowledge of how leaving matter functions, the different properties of drugs (including the calculation and the design of new ones), and the creation of completely new ways of treating numerical diseases. Whenever it is possible, the interplay between theory and experiment is provided. The book features computational techniques such as quantum-chemical and molecular dynamic approaches and quantitative structure-activity relationships. The initial chapters describe the state-of-the art research on the computational investigations in molecular biology, molecular pharmacy, and molecular medicine performed with the use of pure quantum-chemical techniques. The central part of the book illustrates the status of computational techniques that utilize hybrid, so called QM/MM approximations as well as the results of the QSAR studies which now are the most popular in predicting drugs' efficiency. The last chapters describe combined computational and experimental investigations.
This book walks you step-by-step through the whole research process so you can get up to speed understanding and doing your own research. In their friendly, down to earth style, the authors lay the theoretical foundations you need to consume and critique research, before showing how to translate this into action when tackling your own literature review or research project. This second edition: Draws on a wealth of examples from midwifery, four fields of nursing including mental health nursing and child nursing, and a range of health care specialities. Covers new and updated NMC professional education standards and maps all relevant policy and law. Supports your learning with reflective exercises, online activities and quizzes that enable you to be confident in your understanding and develop your thinking. Whether you're encountering research and evidence-based practice for the first time or refreshing your methods knowledge, this is the ideal research companion for nurses and midwives pre-registration, post-registration and beyond.
Intensive investigations on nanoscale magnetism have promoted remarkable progressintechnologicalapplicationsofmagnetisminvariousareas.Thete- nical progress of recent years in the preparations of multilayer thin ?lms and nanowires led to the discovery of Giant Magnetoresistance (GMR), imp- ing an extraordinary change in the resistivity of the material by varying the applied external magnetic ?eld. The Nobel Prize for Physics in 2007 was awardedtoAlbertFertandPeterGrun ] bergfortheirdiscoveryofGMR.App- cations of this phenomenon have revolutionizedtechniques for retrieving data fromharddisks.Thediscoveryalsoplaysamajorroleinvariousmagnetics- sors as well as the development of a new generation of electronics. The use of GMRcanberegardedasoneofthe?rstmajorapplicationsofnanotechnology. The GMR materials have already found applications as sensors of low magnetic ?eld, a key component of computer hard disk heads, magnetores- tive RAM chips etc. The "read" heads for magnetic hard disk drives have allowed us to increase the storage density on a disk drive from 1 to 20 Gbit per square inch, merely by the incorporation of the new GMR materials. On the other hand, recently discovered giant magneto-impedance (GMI) mate- als look very promising in the development of a new generation of microwave band electronic devices (such as switches, attenuators, and antennas) which could be managed electrically."
This book contains a collection of papers that were presented at the IUTAM Symposium on "Computer Models in Biomechanics: From Nano to Macro" held at Stanford University, California, USA, from August 29 to September 2, 2011. It contains state-of-the-art papers on: - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates - Muscle Mechanics: modeling approaches for Ca2+-regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling following aortic coarctation, patient-specific surgery planning for the Fontan procedure - Multiphasic Models: solutes in hydrated biological tissues, reformulation of mixture theory-based poroelasticity for interstitial tissue growth, tumor therapies of brain tissue, remodeling of microcirculation in liver lobes, reactions, mass transport and mechanics of tumor growth, water transport modeling in the brain, crack modeling of swelling porous media - Morphogenesis, Biological Tissues and Organs: mechanisms of brain morphogenesis, micromechanical modeling of anterior cruciate ligaments, mechanical characterization of the human liver, in vivo validation of predictive models for bone remodeling and mechanobiology, bridging scales in respiratory mechanics |
You may like...
Order and Structure in Syntax II
Laura R Bailey, Michelle Sheehan
Hardcover
R1,338
Discovery Miles 13 380
The Chase - Trusting God With Your…
Kyle Kupecky, Kelsey Kupecky, …
Paperback
(3)R285 Discovery Miles 2 850
Ratels Aan Die Lomba - Die Storie Van…
Leopold Scholtz
Paperback
(4)
|