![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > General issues > Medical equipment & techniques > Medical research
Signal Processing for Neuroscientists, Second Edition provides an introduction to signal processing and modeling for those with a modest understanding of algebra, trigonometry and calculus. With a robust modeling component, this book describes modeling from the fundamental level of differential equations all the way up to practical applications in neuronal modeling. It features nine new chapters and an exercise section developed by the author. Since the modeling of systems and signal analysis are closely related, integrated presentation of these topics using identical or similar mathematics presents a didactic advantage and a significant resource for neuroscientists with quantitative interest. Although each of the topics introduced could fill several volumes, this book provides a fundamental and uncluttered background for the non-specialist scientist or engineer to not only get applications started, but also evaluate more advanced literature on signal processing and modeling.
A single trial is complex, with numerous regulations, administrative processes, medical procedures, deadlines and specific protocol instructions to follow. And yet, there has existed no single-volume, comprehensive clinical research reference manual for investigators, medical institutions, and national and international research personnel to keep on the shelf as a ready reference to navigate through trial complexities and ensure compliance with U.S. Federal Regulations and ICH GCP until The Sourcebook for Clinical Research. An actionable, step-by-step guide through beginning to advanced topics in clinical research with forms, templates and checklists to download from a companion website, so that study teams will be compliant and will find all the necessary tools within this book. Additionally, the authors developed Display Posters for Adverse Events Plus Reporting and Medicare Coverage Analysis that can be purchased separately here: https://www.elsevier.com/books-and-journals/book-companion/9780128162422/order-display-posters. Moreover, The Sourcebook for Clinical Research contains clear information and guidance on the newest changes in the industry to keep seasoned investigators and staff current and compliant, in addition to providing detailed information regarding the most complex topics. This book serves as a quick, actionable, off-the-shelf resource to keep by your side at the medical clinic.
Progress in Drug Research is a prestigious book series which provides extensive expert-written reviews on a wide spectrum of highly topical areas in current pharmaceutical and pharmacological research. Founded in 1959 by its current editor, the series has moved from its initial focus on medicinal chemistry to a much wider scope. Today it encompasses all fields concerned with the development of new therapeutic drugs and the elucidation of their mechanisms of action, reflecting the increasingly complex nature of modern drug research. Invited authors present their biological, chemical, biochemical, physiological, immunological, pharmaceutical, toxicological, pharmacological and clinical expertise in carefully written reviews and provide the newcomer and the specialist alike with an up-to-date comprehensive list of prime references. Each volume of Progress in Drug Research contains fully cross-referencing indices which link the books together, forming a virtually encyclopaedic work. The series thus serves as an important, time-saving source of information for researchers concerned with drug research and all those who need to keep abreast of the many recent developments in the quest for new and better medicines.
Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior, a critical piece of the puzzle for clinicians, scientists, course instructors and advanced undergraduate and graduate students. Chapters examine neuroinformatics, genetic and neurobehavioral databases and data mining, also providing an analysis of natural genetic variation and principles and applications of forward (mutagenesis) and reverse genetics (gene targeting). In addition, the book discusses gene expression and its role in brain function and behavior, along with ethical issues in the use of animals in genetics testing. Written and edited by leading international experts, this book provides a clear presentation of the frontiers of basic research as well as translationally relevant techniques that are used by neurobehavioral geneticists.
This monograph focuses on modern femtosecond laser microscopes for two photon imaging and nanoprocessing, on laser tweezers for cell micromanipulation as well as on fluorescence lifetime imaging (FLIM) in Life Sciences. The book starts with an introduction by Dr. Wolfgang Kaiser, pioneer of nonlinear optics and ends with the chapter on clinical multiphoton tomography, the novel high resolution imaging technique. It includes a foreword by the nonlinear microscopy expert Dr. Colin Sheppard. Contents Part I: Basics Brief history of fluorescence lifetime imaging The long journey to the laser and its use for nonlinear optics Advanced TCSPC-FLIM techniques Ultrafast lasers in biophotonics Part II: Modern nonlinear microscopy of live cells STED microscopy: exploring fluorescence lifetime gradients for super-resolution at reduced illumination intensities Principles and applications of temporal-focusing wide-field two-photon microscopy FLIM-FRET microscopy TCSPC FLIM and PLIM for metabolic imaging and oxygen sensing Laser tweezers are sources of two-photon effects Metabolic shifts in cell proliferation and differentiation Femtosecond laser nanoprocessing Cryomultiphoton imaging Part III: Nonlinear tissue imaging Multiphoton Tomography (MPT) Clinical multimodal CARS imaging In vivo multiphoton microscopy of human skin Two-photon microscopy and fluorescence lifetime imaging of the cornea Multiscale correlative imaging of the brain Revealing interaction of dyes and nanomaterials by multiphoton imaging Multiphoton FLIM in cosmetic clinical research Multiphoton microscopy and fluorescence lifetime imaging for resection guidance in malignant glioma surgery Non-invasive single-photon and multi-photon imaging of stem cells and cancer cells in mouse models Bedside assessment of multiphoton tomography
The Epigenetics of Autoimmunity covers a topic directly related to translational epigenetics. Via epigenetic mechanisms, a number of internal and external environmental risk factors, including smoking, nutrition, viral infection and the exposure to chemicals, could exert their influence on the pathogenesis of autoimmune diseases. Such factors could impact the epigenetic mechanisms, which, in turn, build relationship with the regulation of gene expression, and eventually triggering immunologic events that result in instability of immune system. Since epigenetic aberrations are known to play a key role in a long list of human diseases, the translational significance of autoimmunity epigenetics is very high. To bridge the gap between environmental and genetic factors, over the past few years, great progress has been made in identifying detailed epigenetic mechanisms for autoimmune diseases. Furthermore, with rapid advances in technological development, high-throughput screening approaches and other novel technologies support the systematic investigations and facilitate the epigenetic identification. This book covers autoimmunity epigenetics from a disease-oriented perspective and several chapters are presented that provide advances in wide-spread disorders or diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type 1 diabetes (T1DM), systemic sclerosis (SSc), primary Sjoegren's syndrome (pSS) and autoimmune thyroid diseases (AITDs). These emerging epigenetic studies provide new insights into autoimmune diseases, raising great expectations among researchers and clinicians. This seminal book on this topic comprehensively covers the most recent advances in this exciting and rapidly developing new science. They might reveal not only new clinical biomarkers for diagnosis and disease progression, but also novel targets for potential epigenetic therapeutic treatment.
The inflammasome is a protein complex composed of an intracellular sensor-typically a Nod-like receptor (NLR), the precursor procaspase-1, and the adaptor ASC. Inflammasome activation leads to the maturation of caspase-1 and the processing of its substrates, IL-1 and IL-18. The inflammasome has been implicated numerous diseases, and blockade of inflammasome-derived IL-1 has beneficial effects on several of these diseases. Different books have been edited about the biology of inflammasomes and about methods to study, however, the implication of this complex in the different diseases and pathological conditions show the need of a book about the clinical implications and therapeutic options. This project will show the context where inflammasomes are being studied and the molecular implications in the medical and clinical contexts. Other important topic of the inflammasomes will be the development of pharmacological inhibitors in order to improve new clinical applications. In this sense, we can find new drugs with inhibitory effects or old drugs with an inhibitory potential effect. There is a need for re-establishing the real benefits of the inflammasome inhibitions in pathological situations and the management of the differents diseases where inflammasomes are implicated.
This book highlights the latest research presented at the International Conference on Translational Medicine and Imaging (ICTMI) 2017. This event brought together the world's leading scientists, engineers and clinicians from a wide range of disciplines in the field of medical imaging. Bioimaging has continued to evolve across a wide spectrum of applications from diagnostics and personalized therapy to the mechanistic understanding of biological processes, and as a result there is ever-increasing demand for more robust methods and their integration with clinical and molecular data. This book presents a number of these methods.
In this book, renowned scientists describe the role of steroid chirality and modification of lipid membrane physical properties in the modulation of G protein-coupled receptors and ion channels. The application of commonly-used technical approaches such as mass spectrometry and nucleic magnetic resonance transfer spectroscopy for studies on cholesterol distribution and alteration of lipid bilayer characteristics is also discussed. This book offers comprehensive insights into the current understanding of cholesterol-driven modulation of protein function via mechanisms that extend beyond lipid-protein direct interactions. In the first part, the chapters introduce the reader to the use of the chemical derivatives of cholesterol as a valuable laboratory tool in the studies of cholesterol-driven modulation of protein function. In the second part, examples of cholesterol-induced changes in membrane physical characteristics are presented and discussed in light of their multifaceted contribution to the effect of cholesterol on protein function. The book will be of interest to undergraduate and graduate students as well as basic science and medical researchers with a keen interest in the biophysical properties of cholesterol and physiological consequences of cholesterol presence in biological systems.
This volume will outline how to recreate the tumor microenvironment, to culture primary tumors without the need for developmental priming factors, and to deliver targeted therapeutics in a manner that recapitulates pharmacokinetics in vivo. Much of what may be learned from this volume will aid in understanding many aspects of the enhanced study of tumor cell biology in a physiologic context, open new avenues for drug screening and biomarker development, and accelerate the preclinical evaluation of novel personalized medicine strategies for patients in real time.
The book covers all important topics in the area of Survival
Analysis. Each topic has been covered by one or more chapters
written by internationally renowned experts. Each chapter provides
a comprehensive and up-to-date review of the topic. Several new
illustrative examples have been used to demonstrate the
methodologies developed. The book also includes an exhaustive list
of important references in the area of Survival Analysis.
The set of techniques known collectively as real-time data capture (RTDC) is becoming increasingly important in medical research. Based on the collection of data in people's typical environments, RTDC is primarily used with self-reported data, such as medical symptoms and psychological states. Now, its guiding principles and supporting technologies also provide a framework for scientists to monitor physiological information such as heart rate, blood pressure, and skin conductance. This volume gives the most complete view yet of the state of RTDC science and its potential for use across the health and behavioural sciences.
This book collects and reviews, for the first time, a wide range of advances in the area of human aging biomarkers. This accumulated data allows researchers to assess the rate of aging processes in various organs and systems, and to individually monitor the effectiveness of therapies intended to slow aging. In an introductory chapter, the editor defines biomarkers of aging as molecular, cellular and physiological parameters that demonstrate reproducible changes - quantitative or qualitative - with age. The introduction recounts a study which aimed to create a universal model of biological age, whose most predictive parameters were albumin and alkaline phosphatase (indication liver function), glucose (metabolic syndrome), erythrocytes (respiratory function) and urea (renal function). The book goes on to describe DNA methylation, known as the "epigenetic clock," as currently the most comprehensive predictor of total mortality. It is also useful for predicting mortality from cancer and cardiovascular diseases, and for analyzing the effects of lifestyle factors including diet, exercise, and education. Individual contributions draw additional insight from research on genetics and epigenetic aging markers, and immunosenescence and inflammaging markers. A concluding chapter outlines the challenge of integrating of biological and clinical markers of aging. Biomarkers of Human Aging is written for professionals and practitioners engaged in the study of aging, and will be useful to both advanced students and researchers.
Now in its third edition, this textbook serves to frame understandings of health, health-related behavior, and health care in light of social and health inequality as well as structural violence. It also examines how the exercise of power in the health arena and in society overall impacts human health and well-being. Medical Anthropology and the World System: Critical Perspectives, Third Edition includes updated and expanded information on medical anthropology, resulting in an even more comprehensive resource for undergraduate students, graduate students, and researchers worldwide. As in the previous versions of this text, the authors provide insights from the perspective of critical medical anthropology, a well-established theoretical viewpoint from which faculty, researchers, and students study medical anthropology. It addresses the nature and scope of medical anthropology; the biosocial and political ecological origins of disease, health inequities, and social suffering; and the nature of medical systems in indigenous and pre-capitalist state societies and modern societies. The third edition also includes new material on the relationship between climate change and health. Finally, this textbook explores health praxis and the struggle for a healthy world.
This volume will describe recent progress and future directions in radiation oncology and biology research, focusing on strategies designed to improve disease control and reduce the risk of long-term adverse effects on patients. As more and more patients are becoming long-term survivors, this strategy will become increasingly important--in radiation oncology and throughout the field of oncology.
In the last decade, the literature on molecular mechanisms and activated pathways in the different lymphoma categories increased exponentially, which was followed by a more diffuse and successful use of targeted therapies. In this book, expert authors revisit the most relevant aspects of these therapies, with special emphasis on molecular mechanisms and clinical effects of resistance. The knowledge of the underlying mechanisms involved in tumor resistance to target therapies is of paramount importance because they will result in a better selection of patients with sensitive disease and the establishment of suitable combinations of drugs that target different molecules and could overcome the established resistance.
This second edition provides an update on technology and an accelerated tutorial to assist, students, entrepreneurs, new investigators, and established investigators who want to quickly become versed in, and immersed in, the entire process from discovery to clinical trial validation and commercial public benefit. Chapters aim to cover the full spectrum of molecular profiling from tumor staging and grading through biomarker discovery, to commercialization. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Molecular Profiling: Methods and Protocols, Second Edition aims to be a useful guide on molecular profiling.
Retinoids have received considerable attention in recent years and due cognizance has been given to their versatility as biological response modifiers, as evidenced by the virtually explosive growth of literature in this field in the past few years. This volume has been designed to give a current state-of-the-art picture of retinoids. The perceived potential of retinoids in the treatment of certain disease stated has initiated attempts at identifying and synthesizing new retinoid derivatives with definable and selective effects on aberrant biological phenomena. Appropriately, therefore, we begin with the chemistry of retinoids and their derivatives together with discussions of their biological activity. Major advances have been made in understanding the mechanisms by which retinoids modulate physiological and phenotypic traits of cells. The transduction of retinoid signaling by the mediation of nuclear receptors of the steroid/thyroid receptor superfamily has now been studied extensively and the cloning and defining the characteristics of these receptors has been a focus of discussion in this volume. Retinoids also markedly modulate the transduction of extracellular signals such as those imparted by growth factors and hormones, and thus actively influence and control cellular proliferative patterns. Retinoids can alter epidermal growth factor receptor expression (Kawaguchi et al., 1994), responsiveness to thyroid hormone (Esfandiari et al., 1994; Pallet et al., 1994), inhibit the proliferative responses of hematopoietic progenitor cells to granulocyte colony stimulating factor (Smeland et al., 1994), and modulate secretion on interleukins by leukaemic cells (Balitrand et al., 1994), among other things. This has obvious implications for pharmacological manipulation of deregulated growth (Dickens and Colletta, 1993; Mulshine et al., 1993). Apoptosis is another component in the regulation of growth control. Apoptotic cell death is influenced by several agents and retinoids may function by interfering with apoptotic pathways of regulation of growth control and quite legitimately, therefore, the importance of this aspect of retinoid function has been duly recognized here.
This detailed book provides methodological information on cardiac gene delivery, from classic to state-of-the-art technologies and techniques. Efficient, cardiac-specific, and safe vectors, as well as refined vector delivery methods, are key for successful cardiac gene transfer and eventually for improving patients' outcomes. Newer vectors and more efficient vector delivery methods have the potential to dramatically improve gene transduction efficacy, while novel gene manipulation techniques enforce the therapeutic power and broaden disease targets. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cardiac Gene Therapy: Methods and Protocols serves as a valuable tool for molecular biologists and physiologists in the cardiology field conducting cardiac gene transfer research, which will ultimately lead to further advancements in the vital field.
Sturge-Weber syndrome is an enigmatic disorder, seldom difficult to diagnose but often difficult to treat. This book consolidates what is known about the Sturge-Weber syndrome in the hope that this information will be useful in the care of patients and serve as a stimulus to encourage research on some of the remaining questions about the syndrome.This book is the 2nd Edition. The 1st Edition was published in June 1999, ISBN-10: 0967048400; ISBN 13: 978-0967048406
The study of the molecular events leading to cellular transformation and cancer has progressed significantly in the last decade, and it has become apparent that many genes subject to modification in cancer are, in fact, transcription factors that govern the execution of the genetic programme of the cell. Transcription factors can behave either as oncogenes or as tumour suppressor genes. To date only a limited number of transcription factors have been associated with cancer. This volume deals with several transcription factor families that were first identified in oncogenic retroviruses. Each chapter contains a description of the structure of the transcription factors, the nature of target genes, the regulation of their activities, and an explaination of how they can deregulate cell growth and differentiation. This text should be suitable for the specialist scientist and the advanced student
Evolutionary developmental biology or evo-devo is a field of biological research that compares the underlying mechanisms of developmental processes in different organisms to infer the ancestral condition of these processes and elucidate how they have evolved. It addresses questions about the developmental bases of evolutionary changes and evolution of developmental processes. The book's content is divided into three parts, the first of which discusses the theoretical background of evo-devo. The second part highlights new and emerging model organisms in the evo-devo field, while the third and last part explores the evo-devo approach in a broad comparative context. To the best of our knowledge, no other book combines these three evo-devo aspects: theoretical considerations, a comprehensive list of emerging model species, and comparative analyses of developmental processes. Given its scope, the book will offer readers a new perspective on the natural diversity of processes at work in cells and during the development of various animal groups, and expand the horizons of seasoned and young researchers alike.
This indispensable volume highlights recent studies identifying epigenetic mechanisms as essential regulators of skin development, stem cell activity and regeneration. Chapters are contributed by leading experts and promote the skin as an accessible model system for studying mechanisms that control organ development and regeneration. The timely discussions contained throughout are of broad relevance to other areas of biology and medicine and can help inform the development of novel therapeutics for skin disorders as well as new approaches to skin regeneration that target the epigenome. Part of the highly successful Stem Cells and Regenerative Medicine series, Epigenetic Regulation of Skin Development and Regeneration uncovers the fundamental significance of epigenetic mechanisms in skin development and regeneration, and emphasizes the development of new therapies for a number of skin disorders, such as pathological conditions of epidermal differentiation, pigmentation and carcinogenesis. At least six categories of researchers will find this book essential, including stem cell, developmental, hair follicle or molecular biologists, and gerontologists or clinical dermatologists. |
You may like...
Antioxidants Effects in Health - The…
Seyed Mohammad Nabavi, Ana Sanches Sanches Silva
Paperback
R3,051
Discovery Miles 30 510
The Holy Grail Of Investing - The…
Tony Robbins, Christopher Zook
Paperback
R462
Discovery Miles 4 620
Metabolomics in Food and Nutrition
Bart Weimer, Carolyn Slupsky
Hardcover
R3,515
Discovery Miles 35 150
A Modern Guide to the Economics of…
Luigino Bruni, Alessandra Smerilli, …
Hardcover
R4,320
Discovery Miles 43 200
Progress in Ultrafast Intense Laser…
See Leang Chin, Pierre Agostini, …
Hardcover
R4,091
Discovery Miles 40 910
|