![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > General issues > Medical equipment & techniques > Medical research
Synthetic biology is becoming one of the most dynamic new fields of biology, with the potential to revolutionize the way we do biotechnology today. By applying the toolbox of engineering disciplines to biology, a whole set of potential applications become possible ranging very widely across scientific and engineering disciplines. Some of the potential benefits of synthetic biology, such as the development of low-cost drugs or the production of chemicals and energy by engineered bacteria are enormous. There are, however, also potential and perceived risks due to deliberate or accidental damage. Also, ethical issues of synthetic biology just start being explored, with hardly any ethicists specifically focusing on the area of synthetic biology. This book will be the first of its kind focusing particularly on the safety, security and ethical concerns and other relevant societal aspects of this new emerging field. The foreseen impact of this book will be to stimulate a debate on these societal issues at an early stage. Past experiences, especially in the field of GM-crops and stem cells, have shown the importance of an early societal debate. The community and informed stakeholders recognize this need, but up to now discussions are fragmentary. This book will be the first comprehensive overview on relevant societal issues of synthetic biology, setting the scene for further important discussions within the scientific community and with civil society.
This book contains a collection of papers that were presented at the IUTAM Symposium on "Computer Models in Biomechanics: From Nano to Macro" held at Stanford University, California, USA, from August 29 to September 2, 2011. It contains state-of-the-art papers on: - Protein and Cell Mechanics: coarse-grained model for unfolded proteins, collagen-proteoglycan structural interactions in the cornea, simulations of cell behavior on substrates - Muscle Mechanics: modeling approaches for Ca2+-regulated smooth muscle contraction, smooth muscle modeling using continuum thermodynamical frameworks, cross-bridge model describing the mechanoenergetics of actomyosin interaction, multiscale skeletal muscle modeling - Cardiovascular Mechanics: multiscale modeling of arterial adaptations by incorporating molecular mechanisms, cardiovascular tissue damage, dissection properties of aortic aneurysms, intracranial aneurysms, electromechanics of the heart, hemodynamic alterations associated with arterial remodeling following aortic coarctation, patient-specific surgery planning for the Fontan procedure - Multiphasic Models: solutes in hydrated biological tissues, reformulation of mixture theory-based poroelasticity for interstitial tissue growth, tumor therapies of brain tissue, remodeling of microcirculation in liver lobes, reactions, mass transport and mechanics of tumor growth, water transport modeling in the brain, crack modeling of swelling porous media - Morphogenesis, Biological Tissues and Organs: mechanisms of brain morphogenesis, micromechanical modeling of anterior cruciate ligaments, mechanical characterization of the human liver, in vivo validation of predictive models for bone remodeling and mechanobiology, bridging scales in respiratory mechanics
The proposed volume provides both fundamental and detailed information about the computational and computational-experimental studies which improve our knowledge of how leaving matter functions, the different properties of drugs (including the calculation and the design of new ones), and the creation of completely new ways of treating numerical diseases. Whenever it is possible, the interplay between theory and experiment is provided. The book features computational techniques such as quantum-chemical and molecular dynamic approaches and quantitative structure-activity relationships. The initial chapters describe the state-of-the art research on the computational investigations in molecular biology, molecular pharmacy, and molecular medicine performed with the use of pure quantum-chemical techniques. The central part of the book illustrates the status of computational techniques that utilize hybrid, so called QM/MM approximations as well as the results of the QSAR studies which now are the most popular in predicting drugs' efficiency. The last chapters describe combined computational and experimental investigations.
Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defence system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The purpose of the planned volume is to sum up current knowledge about mechanisms regulating and controlling cell fusions. The field has expanded vastly within the past few years and leaders in the field will be invited to contribute with current overviews of their specific areas of knowledge. Attention will be paid both to true fusogens like proteins encoded by the viral (e.g. HIV), caenorhabdidtis (EFF) mammalian and human (e.g. syncytins and Pb-1) genomes as well as to mechanisms regulating the activities of the fusogens. The commitment of cells to fuse represents an irreversible step. It stands to reason that a number of factors controlling and safe-guarding these mechanisms must exist. It seems equally reasonable to assume that many of these mechanisms are redundant in different systems. By bringing together experts working in each their system there is a fair chance that a consensus concerning the mechanistics of cell fusions may develop.
This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.
Intensive investigations on nanoscale magnetism have promoted remarkable progressintechnologicalapplicationsofmagnetisminvariousareas.Thete- nical progress of recent years in the preparations of multilayer thin ?lms and nanowires led to the discovery of Giant Magnetoresistance (GMR), imp- ing an extraordinary change in the resistivity of the material by varying the applied external magnetic ?eld. The Nobel Prize for Physics in 2007 was awardedtoAlbertFertandPeterGrun ] bergfortheirdiscoveryofGMR.App- cations of this phenomenon have revolutionizedtechniques for retrieving data fromharddisks.Thediscoveryalsoplaysamajorroleinvariousmagnetics- sors as well as the development of a new generation of electronics. The use of GMRcanberegardedasoneofthe?rstmajorapplicationsofnanotechnology. The GMR materials have already found applications as sensors of low magnetic ?eld, a key component of computer hard disk heads, magnetores- tive RAM chips etc. The "read" heads for magnetic hard disk drives have allowed us to increase the storage density on a disk drive from 1 to 20 Gbit per square inch, merely by the incorporation of the new GMR materials. On the other hand, recently discovered giant magneto-impedance (GMI) mate- als look very promising in the development of a new generation of microwave band electronic devices (such as switches, attenuators, and antennas) which could be managed electrically."
Patenting Nanomedicines: Legal Aspects, Intellectual Property and Grant Opportunities focusses on the fundamental aspects of Patenting Nanomedicines applied in different Drug Delivery and Targeting Systems . The promoters of new findings in this field of research are numerous and spread worldwide; therefore, managing intellectual property portfolios, and the acquisition and exploitation of new knowledge face several contingency factors. Today, the scientific community is discussing issues of economic outcomes in the field of Nanomedicines. Major concerns include questions as to whether the research groups, academics, industry and other stakeholders should work in unison or independently, if innovation or adaptation of new technology should be prioritized, public versus private research funding, and safeguarding versus sharing knowledge. However, despite its increasing importance for humankind, it is a matter of concern as to whether technological development can really be stimulated by patent protection. An intellectual property strategy should aim to develop a qualitative patent portfolio for continuous learning. This book addresses questions of ethics, socio-political policies and regulatory aspects of novel Nanomedicine-based products which are currently under development for the diagnosis and treatment of different types of diseases. It is divided in two parts Part I is composed of the first 3 chapters, which focus on the fundamentals of legal aspects, emerging threats, advantages and disadvantages of patenting Nanomedicines, whereas Part II collects 12 chapters discussing different types of Nanomedicine-based products, their potential marketing aspects and patent protection. Whenever applied, each chapter offers a list of patents, based on a specific application in drug delivery and targeting. An outstanding team of 53 authors have contributed to this book, which will be of interest to professionals from the field of patent examiners, academics, researchers and scientists, students and other practitioners.
This book contextualizes translational research and provides an up to date progress report on therapies that are currently being targeted in lung cancer. It is now well established that there is tremendous heterogeneity among cancer cells both at the inter- and intra-tumoral level. Further, a growing body of work highlights the importance of targeted therapies and personalized medicine in treating cancer patients. In contrast to conventional therapies that are typically administered to the average patient regardless of the patient's genotype, targeted therapies are tailored to patients with specific traits. Nonetheless, such genetic changes can be disease-specific and/or target specific; thus, the book addresses these issues manifested in the somatically acquired genetic changes of the targeted gene. Each chapter is written by a leading medical oncologist who specializes in thoracic oncology and is devoted to a particular target in a specific indication. Contributors provide an in-depth review of the literature covering the mechanisms underlying signaling, potential cross talk between the target and downstream signaling, and potential emergence of drug resistance.
This book focuses on the evolutionary and developmental origins of the social mind. Written by leading scientists in the field, the book brings together the currently segregated views on social cognition in the two fields.
This book discusses the emergence of a new class of genes with a specific anticancer activity. These genes, recently defined as "Anticancer Genes", are reviewed in individual chapters on their mode of action, the specific cell death signals they induce, and the status of attempts to translate them into clinical application. Anticancer Genes provides an overview of this nascent field, its genesis, current state, and prospect. It discusses how Anticancer Genes might lead to the identification of a repertoire of signaling pathways directed against cellular alterations that are specific for tumor cells. With contributions from experts worldwide, Anticancer Genes is an essential guide to this dynamic topic for researchers and students in cancer research, molecular medicine, pharmacology and toxicology and genetics as well as clinicians and clinical researchers interested in the therapeutic potential of this exciting new field.
We present an in-depth description of resistance to targeted therapies in breast cancer. Targeted therapies discussed here include those used to treat ER+ or Her2+ breast cancers (i.e., Tamoxifen or trastuzumab) or those targeting signaling pathways aberrantly activated in triple negative breast cancer (i.e., EGFR and Wnt signaling). We have also provided an overview of standard of care as an introduction into the importance of targeted therapy. It is our hope that this volume gives an insight into the landscape of breast cancer treatment, the challenges of targeted therapy, and a glimpse into the future of breast cancer therapy.
PARP Inhibitors for Cancer Therapy provides a comprehensive overview of the role of PARP in cancer therapy. The volume covers the history of the discovery of PARP (poly ADP ribose polymerase) and its role in DNA repair. In addition, a description of discovery of the PARP family, and other DNA maintenance-associated PARPs will also be discussed. The volume also features a section on accessible chemistry behind the development of inhibitors. PARP inhibitors are a group of pharmacological inhibitors that are a particularly good target for cancer therapy. PARP plays a pivotal role in DNA repair and may contribute to the therapeutic resistance to DNA damaging agents used to treat cancer. Researchers have learned a tremendous amount about the biology of PARP and how tumour-specific defects in DNA repair can be exploited by PARPi. The "synthetic lethality" of PARPi is an exciting concept for cancer therapy and has led to a heightened activity in this area.
Mouse Genetics offers for the first time in a single comprehensive volume a practical guide to mouse breeding and genetics. Nearly all human genes are present in the mouse genome, making it an ideal organism for genetic analyses of both normal and abnormal aspects of human biology. Written as a convenient reference, this book provides a complete description of the laboratory mouse, the tools used in analysis, and procedures for carrying out genetic studies, along with background material and statistical information for use in ongoing data analysis. It thus serves two purposes, first to provide students with an introduction to the mouse as a model system for genetic analysis, and to give practicing scientists a detailed guide for performing breeding studies and interepreting experimental results. All topics are developed completely, with full explanations of critical concepts in genetics and molecular biology. As investigators around the world are rediscovering both the heuristic and practical value of the mouse genome, the demand for a succinct introduction to the subject has never been greater. Mouse Genetics is intended to meet the needs of this wide audience.
The Advances in Cancer Research series provides invaluable information on the exciting and fast-moving field of cancer research. This volume presents outstanding and original reviews on a variety of topics including
The Advances in Cancer Research series provides invaluable information on the exciting and fast-moving field of cancer research. This volume presents outstanding and original reviews on a variety of topics.
Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease provides the most current review of the literature relating to the role and influence of heat shock (stress) proteins on the establishment, progression and resolution of infectious disease. Written by leaders in the field of heat shock proteins (HSP) and their biological and immunological properties, the contributors provide a fascinating insight into the complex relationship between, and the involvement of prokaryotic and eukaryotic HSP in disease states. It has been known for some considerable time that heat shock proteins from prokaryotic organisms are immunodominant molecules that are intimately involved in the induction of potential protective inflammatory responses, and this aspect of HSP biology is updated herein. In addition to regulating heat shock protein gene expression, the transcription factor HSF1 also appears to play an important role in regulating immune responses to infection. Heat shock proteins are now known to influence infectious disease processes in a number of diverse ways: they are involved in the propagation of prions, the replication and morphogenesis of viruses, and the resistance of parasites to chemotherapy. These proteins also appear to be important mediators of bacteria-host interactions and inflammation, the latter via interactions with cell surface molecules and structures such as Toll-like receptors and lipid rafts. Heat shock proteins can be expressed on the surface of infected cells, and this is likely to provide a target for the innate immune response. Elevated levels of circulating HSP are present in infectious diseases and these proteins might therefore regulate inflammatory responses to pathogenic challenge on a systemic basis. Heat shock proteins are also implicated in the impact of genital tract infections on the reproductive outcome, as well as in the local and systemic consequences of periodontal disease. Fever-range temperatures can induce the expression of heat shock proteins, and the final chapter in the book examines the influence of fever-range hyperthermia on a variety of cells and the organization of plasma membranes. This book is an essential read for graduates and postgraduates in Biology, pro- and eukaryotic Biochemistry, Immunology, Microbiology, Inflammatory and Infectious Disease, and Pathology.
The field of stem cell biology is geared towards translation into clinical practice through in vitro tissue production and regeneration therapy. Since the discovery of adult neurogenesis, much attention has been put on the study of differentiation of stem cells into neural cell types and the development of model systems for stroke and neurodegenerative diseases. In addition to chapters on therapeutic applicability of embryonic, very small-embryonic like, mesenchymal stem and neural progenitor cells, this book covers signalling mechanisms guiding induction to differentiation and cell diversification. Furthermore, fundamental aspects of stem cell biology and neurogenesis, such as the importance of proliferation induction, programmed cell death and the function of glia in differentiation of stem cells and development of neuronal circuits, are also highlighted. In vitro cultures of embryonic, mesenchymal and neural stem cells as well as mobilization of endogenous stem and precursor cells for brain repair and replacement therapy in neurological disorders are important issues of this book. Each chapter is written by researchers who are leaders in the field and provides an invaluable resource for information on the most current advances in the field and possible therapeutic applications, with discussions of controversial issues and areas of emerging importance. By providing an up-to-date and critical view of the state of Science, we hope that this book shall be a base for exciting scientific ideas regarding functions and therapeutic applications of stem cells in the adult brain. The book is directed to neuroscientists, physicians, students and all who are engaged and interested in the exciting and rapidly expanding field of modern neuroscience and stem cell biology.
Brain Research in Language addresses important neurological issues involved in reading. The reading process is a highly composite cognitive task, which relies on brain systems that were originally devoted to other functions. The majority of studies in this area have used behavioral methodologies. This book presents data obtained from studies employing behavioral, electrophysiological and imaging methodologies focusing on the regular reading process and the dyslexic population.
The birth and the development of molecular biology and, subsequently, of genetic engineering and biotechnology cannot be separated from the advancements in our knowledge of the genetics, biochemistry and physiology of bacteria and bacter- phages. Also most of the tools employed nowadays by biotechnologists are of bacterial (or bacteriophage) origin and the playground for most of the DNA manipulations still remains within bacteria. The relative simplicity of the bacterial cell, the short gene- tion times, the well defined and inexpensive culturing conditions which characterize bacteria and the auto-catalytic process whereby a wealth of in-depth information has been accumulated throughout the years have significantly contributed to generate a large number of knowledge-based, reliable and exploitable biological systems. The subtle relationships between phages and their hosts have produced a large amount of information and allowed the identification and characterization of a number of components which play essential roles in fundamental biological p- cesses such as DNA duplication, recombination, transcription and translation. For instance, to remain within the topic of this book, two important players in the or- nization of the nucleoid, FIS and IHF, have been discovered in this way. Indeed, it is difficult to find a single fundamental biological process whose structural and functional aspects are better known than in bacteria.
This volume provides a comprehensive treatise on the latest studies linking prostate cancer with energy balance, which together constitute a major challenge and opportunity for research scientists and clinicians especially those dealing with the expanding population of older men confronted with obesity and associated comorbidities. This volume should be a valuable resource to physicians, oncologists, urologists, endocrinologists, nurses, nutritionists, dieticians, and exercise therapists dealing with men with energy balance issues and/or questions regarding the linkage between energy balance and cancer. Moreover, this volume should serve as an important resource for cancer researchers especially for scientists studying lifestyle modification and prevention strategies to better understand and disrupt the linkage between obesity and cancer.
Pattern Formation in Morphogenesis is a rich source of interesting and challenging mathematical problems. The volume aims at showing how a combination of new discoveries in developmental biology and associated modelling and computational techniques has stimulated or may stimulate relevant advances in the field. Finally it aims at facilitating the process of unfolding a mutual recognition between Biologists and Mathematicians of their complementary skills, to the point where the resulting synergy generates new and novel discoveries. It offers an interdisciplinary interaction space between biologists from embryology, genetics and molecular biology who present their own work in the perspective of the advancement of their specific fields, and mathematicians who propose solutions based on the knowledge grasped from biologists.
This book offers an overview of our current understanding of host defense peptides and their potential for clinical applications as well as some of the obstacles to this. The chapters, written by leading experts in the field, detail the number and diversity of host defense peptides, and discuss the therapeutic potential not only of antibacterial, but also of antifungal, antiviral, plant antimicrobial and anticancer host defense peptides. The authors provide new insights into their mechanisms of action and their immunomodulatory properties, and review recent advances in the design of novel therapeutic molecules. Lastly, their potential to prevent preterm births and Staphylococcus aureus infections is highlighted. The book is of interest to researchers, industry and clinicians alike.
Human cell culture is not a new topic, but the development of new molecular techniques and reagents which can be used to investigate cell function and the responsible intracellular mechanisms make it a continuing requirement. This third edition of Human Cell Culture Protocols expands upon the previous editions with current, detailed protocols for the isolation and culture of a range of primary cells from human tissues. With new chapters on pancreatic cells needed for basic studies on the pathogenesis of diabetes and for their application for islet transplantation, the book also delves into protocols for hepatocytes, skin cells, lung cells, parathyroid cells, gastric cells, renal cells, adipocytes, ovarian cells, bone cells, vascular smooth muscle cells, vascular endothelial cells, regulatory T cells, blood mononuclear cells, as well as new techniques being applied to human cell culture, particularly the use of biocompatible scaffolds to grow cells, the in vitro use of laser microdissection to isolate cells from culture, and automated cell culture. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Human Cell Culture Protocols, Third Edition makes it possible for a worker with basic cell culture training, whether in the fields of cell biology, gene therapy, and cell transplantation, to prepare cell cultures of the specific cell type necessary to forward their vital research.
This book is a collection of articles written by prominent scientists who gathered in the city of Recife, Brazil, 23-27 October 2010, celebrating the 10th International Symposium on Yersinia. The event is held every four years in a different country and for the Yersinia 2010, an interesting and updated program covering advances in research in Yersiniae was organized. The major advances achieved over the past four years since the last symposium held in Lexington, USA in 2006 were divided into eight chapters: Epidemiology, Clinical, Diagnostic and Therapeutic aspects; Ecology and Modeling; Genomic/Transcriptomics and Large Scale Population; Immune Response and Vaccine; Pathogenesis and Pathogenicity Factors; Cellular Yersiniology; Bacterial Structure and Metabolism: Roles in Pathogenesis and Bacterial Life Style. The purpose of the book is to extend cutting edge knowledge on Yersinia discussed during the 10th International Symposium.
Springer Handbook of Enzymes provides data on enzymes sufficiently well characterized. It offers concise and complete descriptions of some 5,000 enzymes and their application areas. Data sheets are arranged in their EC-Number sequence and the volumes themselves are arranged according to enzyme classes. This new, second edition reflects considerable progress in enzymology: many enzymes are newly classified or reclassified. Each entry is correlated with references and one or more source organisms. New datafields are created: application and engineering (for the properties of enzymes where the sequence has been changed). The total amount of material contained in the Handbook has more than doubled so that the complete second edition consists of 39 volumes as well as a Synonym Index. In addition, starting in 2009, all newly classified enzymes are treated in Supplement Volumes. Springer Handbook of Enzymes is an ideal source of information for researchers in biochemistry, biotechnology, organic and analytical chemistry, and food sciences, as well as for medicinal applications. |
You may like...
Classical Antiquity in Heavy Metal Music
K F B Fletcher, Osman Umurhan
Hardcover
R3,992
Discovery Miles 39 920
The Science of Aphasia Rehabilitation
Chris Code, Donald Freed
Hardcover
R4,202
Discovery Miles 42 020
Aging with Attitude - Growing Older with…
Robert Arthur Levine
Hardcover
R1,559
Discovery Miles 15 590
Living Metal - Metal Scenes around the…
Bryan Bardine, Jerome Stueart
Hardcover
R2,229
Discovery Miles 22 290
Reading Our Lives - The poetics of…
William L. Randall, Elizabeth McKim
Hardcover
R1,524
Discovery Miles 15 240
|