![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Molecular biology
In keeping with the broad objectives set for the serial publication of Advances in Structural Biology, Volume 6 contains exhaustive articles from experts in diverse areas of biomedical research. The common thread among the various articles is their relevance to the applications of cell biology to human health.
Bifidobacteria are Gram-positive anaerobic bacteria, found naturally in the gut of humans and other mammals. They are widely used as probiotic organisms in a vast array of formulations for the prevention, alleviation, and treatment of many intestinal disorders. However, bifidobacteria are fastidious microorganisms and are difficult to study in the laboratory, so until recently, understanding of their genetics lagged behind that of other high GC content Gram-positive bacteria. The application of modern whole genome approaches to bifidobacteria research has changed all of this, permitting the accumulation of an impressive amount of data, something that could not have been foreseen a few years ago. This book brings together the expertise and enthusiasm of the leading bifidobacteria researchers from around the world to provide a state-of-the art overview of the molecular biology and genomics of this exciting and important microbial genus. Topics include: ecology, genomics, comparative geno
This volume of "Advances in Cell Aging and Gerontology" critically reviews the rapidly advancing area of telomerase research with a focus at the molecular and cellular levels. The clearly established function of telomerase is to maintain chromosome ends during successive rounds of cell division by adding a six base DNA repeat on to the telomeric ends of chromosomes. As presented in the chapters of this volume, the mechanisms that regulate telomerase expression and activity are complex. Moreover, emerging data suggest additional roles for telomerase in the regulation of cell differentiation and survival.
The aim of "The Adhesive Interaction of Cells" has been to assemble
a series of reviews by leading international experts embracing many
of the most important recent developments in this rapidly expanding
field. The purpose of all biological research is to understand the
form and function of living organisms and, by comprehending the
normal, to find explanations and remedies for the abnormal and for
disease conditions. The molecules involved in cell adhesion are of
fundamental importance to the structure and function of all
multicellular organisms. In this book, the contributors focus on
the systems of vertebrates, especially mammals, since these are
most relevant to human disease. It would have been equally possible
to concentrate on developmental processes and adhesion in lower
organisms.
Artificial intelligence (AI) has become pervasive in most areas of research and applications. While computation can significantly reduce mental efforts for complex problem solving, effective computer algorithms allow continuous improvement of AI tools to handle complexity-in both time and memory requirements-for machine learning in large datasets. Meanwhile, data science is an evolving scientific discipline that strives to overcome the hindrance of traditional skills that are too limited to enable scientific discovery when leveraging research outcomes. Solutions to many problems in medicine and life science, which cannot be answered by these conventional approaches, are urgently needed for society. This edited book attempts to report recent advances in the complementary domains of AI, computation, and data science with applications in medicine and life science. The benefits to the reader are manifold as researchers from similar or different fields can be aware of advanced developments and novel applications that can be useful for either immediate implementations or future scientific pursuit. Features: Considers recent advances in AI, computation, and data science for solving complex problems in medicine, physiology, biology, chemistry, and biochemistry Provides recent developments in three evolving key areas and their complementary combinations: AI, computation, and data science Reports on applications in medicine and physiology, including cancer, neuroscience, and digital pathology Examines applications in life science, including systems biology, biochemistry, and even food technology This unique book, representing research from a team of international contributors, has not only real utility in academia for those in the medical and life sciences communities, but also a much wider readership from industry, science, and other areas of technology and education.
Synthetic Biology - A Primer gives a broad overview of the emerging field of synthetic biology and the foundational concepts on which it is built. It will be of interest to final year undergraduates, postgraduates and established researchers who are interested in learning about this exciting new field. The book introduces readers to fundamental concepts in molecular biology and engineering and then explores the two major themes for synthetic biology, namely 'bottom-up' and 'top-down' engineering approaches. 'Top-down' engineering utilises a conceptual framework of engineering and systematic design to build new biological systems by integrating robustly characterised biological parts into an existing system through the use of extensive mathematical modelling. The 'bottom-up' approach involves the design and building of synthetic protocells using basic chemical and biochemical building blocks from scratch. Exemplars of cutting-edge applications designed using synthetic biology principles are presented, including the production of novel biofuels from renewable feedstocks, microbial synthesis of pharmaceuticals and fine chemicals, and the design and implementation of biosensors to detect infections and environmental waste. The book also uses the Internationally Genetically Engineered Machine (iGEM) competition to illustrate the power of synthetic biology as an innovative research and training science. Finally, the primer includes a chapter on the ethical, legal and societal issues surrounding synthetic biology, illustrating the integration of social sciences in synthetic biology research.
Membrane processes today play a signifi cant role in the replacement therapy for acute and chronic organ failure diseases. Current extracorporeal blood purifi cation and oxygenation devices employ membranes acting as selective barriers for the removal of endogeneous and exogeneous toxins and for gas exchange, respectively. Additionally, membrane technology offers new interesting opportunities for the design of bioartificial livers, pancreas, kidneys, lungs etc. This book reviews the latest developments in membrane systems for bioartificial organs and regenerative medicine, investigates how membrane technology can improve the quality and efficiency of biomedical devices, and highlights the design procedures for membrane materials covering the preparation, characterization, and sterilization steps as well as transport phenomena. The different strategies pursued for the development of membrane bioartifi cial organs, including crucial issues related to blood/cell-membrane interactions are described with the aim of opening new and exciting frontiers in the coming decades. The book is a valuable tool for tissue engineers, clinicians, biomaterials scientists, membranologists as well as biologists and biotechnologists. It is also a source of reference for students, academic and industrial researchers in the topic of biotechnology, biomedical engineering, materials science and medicine.
This detailed volume presents a comprehensive compendium of clinical metabolomics protocols covering LC-MS, GC-MS, CE-MS, and NMR-based clinical metabolomics as well as bioinformatics and study design considerations. The methodologies explored here form the core of several very promising initiatives evolving around personalized health care and precision medicine, which can be seen as complimentary to the field of clinical chemistry and aid the aforementioned field with novel disease markers and diagnostic patterns. Written for the highly successful Methods in Molecular Biology series, chapters include brief introductions to their topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Clinical Metabolomics: Methods and Protocols aims to serve as the basis for successful communication between scientists from several fields, including chemists, biologist, bioinformaticians, and clinicians, ultimately leading to effective study design and completion.
A proper understanding of the diversity, systematics, and nomenclature of microbes is increasingly important in many branches of biological science. The molecular approach to phylogenetic analysis - pioneered by Carl Woese in the 1970s and leading to the three-domain model (Archaea, Bacteria, Eucarya) - has revolutionized our thinking about evolution in the microbial world. The technological innovation of modern molecular biology and the rapid advancement in computational science have led to a flood of nucleic acid sequence information, bioinformatic tools, and phylogenetic inference methods. Phylogenetic analysis has long played a central role in microbiology and the emerging fields of comparative genomics and phylogenomics require substantial knowledge and understanding of phylogenetic analysis and computational methods. In this book, leading scientists from around the world explore current concepts in molecular phylogeny and their application with respect to microorganisms. The authors describe the different approaches applied today to elucidate the molecular phylogeny of prokaryotes (and eukaryotic protists) and review current phylogenetic methods, techniques, and software tools. Topics covered include: a historical overview, computational tools, multilocus sequence analysis, 16S rRNA phylogenetic trees, rooting of the universal tree of life, applications of conserved indels, lateral gene transfer, endosymbiosis, and the evolution of plastids.
This second edition integrates the more technical and mathematical aspects of bioinformatics with concrete examples of their application to current research problems in molecular, cellular and evolutionary biology. This broad, unified approach is made possible, in large part, by the very wide scope of Dr. Xia's own research experience. The integration of genomics, proteomics and transcriptomics into a single volume makes this book required reading for anyone entering the new and emerging fields of Systems Biology and Evolutionary Bioinformatics.
Living organisms exhibit specific responses when confronted with
sudden changes in their environmental conditions. The ability of
the cells to acclimate to their new environment is the integral
driving force for adaptive modification of the cells. Such
adaptation involves a number of cellular and biochemical alteration
including metabolic homeostasis and reprogramming of gene
expression. Changes in metabolic pathways are generally short-lived
and reversible, while the consequences of gene expression are a
long-term process and may lead to permanent alternation in the
pattern of adaptive responses.
This book provides authentic and comprehensive information on the concepts, methods, functional details and applications of nano-emulsions. Following an introduction to the applications of nanotechnology in the development of foods, it elaborates on food-grade nano-emulsion and their significance, discusses various techniques and methods for producing food-grade nano-emulsion, and reviews the main ingredient and component of food-grade nano-emulsions. Further, the book includes a critical review of the engineering aspect of fabricating food-grade nano-emulsions and describe recently developed vitamin encapsulated nano-systems. In closing, it discuss the challenges and opportunities of characterizing nano-emulsified systems, the market risks and opportunities of nano-emulsified foods, and packaging techniques and safety issues - including risk identification and risk management - for nano-foods. The book offers a unique guide for scientists and researchers working in this field. It will also help researchers, policymakers, industry personnel, journalists and the general public to understand food nanotechnology in great detail.
Novel molecular motifs named Immunoreceptor Tyrosine-based Inhibition Motifs (ITIMs) have recently been recognized in the intracytoplasmic domains of a still-increasing number of receptors which control cell activation and proliferation. Research on ITIM-bearing molecules has developed exponentially during the last three years, generating new concepts with important consequences in basic research and with exciting potential clinical applications. The present volume contains 15 reviews written by authors who all made significant contributions to the identification of ITIM-bearing molecules and the study of their biological properties. It constitutes the first synthesis ever published that is specifically devoted to this emerging topic.
This volume introduces the reader to the field of enzyme stabilization and the different theories of enzyme stabilization, including the use of immobilization as a stabilization technique. The first part of the book focuses on protocols for enzyme stabilization in solutions including liposome formation, micelle introduction, crosslinking, and additives. The second part of the book discusses protocols for enzyme stabilization during enzyme immobilization, including common techniques like sol-gel encapsulation, polymer encapsulation, and single enzyme nanoparticle formation. Protocols for a variety of enzymes are shown, but the enzymes are chosen as examples to show that these protocols can be used for both enzymes of biological importance, as well as enzymes of industrial importance. The final part details spectroscopic protocols, methods, and assays for studying the effectiveness of the enzyme stabilization and immobilization strategies. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Enzyme Stabilization and Immobilization: Methods and Protocols, Second Edition provides molecular biologists, biochemists, and biomedical and biochemical engineers with the state-of-the-art technical information required to effectively stabilize their enzyme of interest in a variety of environments (i.e., harsh temperature, pH, or solvent conditions).
This contributed volume presents an overview of concepts, methods, and applications used in several quantitative areas of drug research, development, and marketing. Chapters bring together the theories and applications of various disciplines, allowing readers to learn more about quantitative fields, and to better recognize the differences between them. Because it provides a thorough overview, this will serve as a self-contained resource for readers interested in the pharmaceutical industry, and the quantitative methods that serve as its foundation. Specific disciplines covered include: Biostatistics Pharmacometrics Genomics Bioinformatics Pharmacoepidemiology Commercial analytics Operational analytics Quantitative Methods in Pharmaceutical Research and Development is ideal for undergraduate students interested in learning about real-world applications of quantitative methods, and the potential career options open to them. It will also be of interest to experts working in these areas.
This textbook introduces readers to the recent advances in the emerging field of genetic design automation (GDA). Starting with an introduction and the basic concepts of molecular biology, the authors provide an overview of various genetic design automation tools. The authors then present the DVASim tool (Dynamic Virtual Analyzer and Simulator) which is used for the analysis and verification of genetic logic circuits. This includes methods and algorithms for the timing and threshold value analyses of genetic logic circuits. Next, the book presents the GeneTech tool (A technology mapping tool for genetic circuits) and the methods developed for optimization, synthesis, and technology mapping of genetic circuits. Chapters are followed by exercises which give readers hands-on practice with the tools presented. The concepts and algorithms are thoroughly described, enabling readers to improve the tools or use them as a starting point to develop new tools. Both DVASim and GeneTech are available from the developer's website, free of charge. This book is intended for a multidisciplinary audience of computer scientists, engineers and biologists. It provides enough background knowledge for computer scientists and engineers, who usually do not have any background in biology but are interested to get involved in this domain. This book not only presents an accessible basic introduction to molecular biology, it also includes software tools which allow users to perform laboratory experiments in a virtual in-silico environment. This helps newbies to get a quick start in understanding and developing genetic design automation tools. The third part of this book is particular useful for biologists who usually find it difficult to grasp programming and are reluctant to developing computer software. They are introduced to the graphical programming language, LabVIEW, from which they can start developing computer programs rapidly. Readers are further provided with small projects which will help them to start developing GDA tools.
This book provides a comprehensive overview of topics describing the earliest steps of fertilization, from egg activation and fertilization to the activation of the zygotic genome, in various studied vertebrate model systems. The contribution of maternal and paternal factors and their role in the early embryo as parental DNA becomes modified and embryonic genes become activated is fundamental to the initiation of embryogenesis in all animal systems. It can be argued that this is a unique developmental period, when information from the parents is compressed to direct the development of the body plan of the entire organism, a process of astounding simplicity, elegance and beauty. In addition to their fundamental scientific interest, many frontiers of biomedicine, such as reproductive biology, stem cells and reprogramming, and the understanding of intergenerational diseases, depend on advances in our knowledge of these early processes. Vertebrate Development: Maternal to Zygotic Control brings together chapters from experts in various disciplines describing the latest advances related to this important developmental transition. Each chapter is a synthesis of knowledge relevant to all vertebrates, with details on specific systems as well as comparisons between the various studied vertebrate models. The editorial expertise encompasses the fields of major vertebrate model systems (mammalian, amphibian and teleost) ensuring a balanced approach to various topics. This unique book-with its combination of in-depth and up-to-date basic research, inter-species comprehensiveness and emphasis on the very early stages of animal development-is essential for research scientists studying vertebrate development, as well as being a valuable resource for college educators teaching advanced courses in developmental biology.
Methods in Cancer Stem Cell Biology: Part A, Volume 170 in the Methods in Cell Biology series highlights advances in the field, with this new volume presenting interesting chapters on timely topics, including Orthotopic brain tumor models derived from glioblastoma stem-like cells, RNA sequencing in hematopoietic stem cells, Generation of inducible pluripotent stem cells from human dermal fibroblasts, In vitro preparation of dental pulp stem cell grafts combined with biocompatible scaffolds for tissue engineering, Gene expression knockdown in chronic myeloid leukemia stem cells, Identification and isolation of slow-cycling GSCs, Assessment of CD133, EpCAM, and much more.
This volume brings together a set of reviews that provide a summary
of our current knowledge of the proteolytic machinery and of the
pathways of protein breakdown of prokaryotic and eukaryotic cells.
Intracellular protein degradation is much more than just a
mechanism for the removal of incorrectly folded or damaged
proteins. Since many short-lived proteins have important regulatory
functions, proteolysis makes a significant contribution to many
cellular processes including cell cycle regulation and
transciptional control. In addition, limited proteolytic cleavage
can provide a rapid and efficient mechanism of enzyme activation or
inactivation in eukaryotic cells.
A clear introduction to the complex and fast moving field of
"Human Molecular Genetics"; recommended for""students studying the
subject as part of a general biology, genetics or medical
degree. New to the third edition:
The following online resources support the text:
This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
This volume presents methods and techniques to study oogenesis in a broad range of organisms, from plants to mammals. Oogenesis: Methods and Protocols guides readers through protocols on models of developmental biology, oogenesis in plants, worms, fruit flies, mosquitos, butterflies, starfish, zebrafish, frog, chicken and mouse. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Oogenesis: Methods and Protocols aims to ensure successful results in the further study of this vital field. |
![]() ![]() You may like...
|