![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Molecular biology
This widely expanded second edition offers a compilation of robust, reproducible techniques for the conservation of a wide range of biological materials. It includes novel approaches and protocols that were not preservable when the first edition was published. The book begins with a discussion of long term ex situ conservation of biological resources, the role of biological resource centers, and fundamental principles of freeze-drying and cryopreservation. Each chapter focuses on the preservation of specific biological materials, including proteins, mircroorganisms, cell lines, and multicellular structures.
Eukaryotic DNA Damage Surveillance and Repair contains chapters
from experts in the field of DNA damage detection, repair, and cell
cycle control. The work reviews current understanding of how
different types of DNA damage are detected and focuses on how these
surveillance mechanisms are coupled to processes of DNA repair,
cell cycle control, and apoptosis.
This collection of robust, readily reproducible methods for microarray-based studies includes expert guidance in the optimal data analysis and informatics. On the methods side are proven techniques for monitoring subcellular RNA localization en masse, for mapping chromosomes at the resolution of a single gene, and for surveying the steady-state genome-wide distribution of DNA binding proteins in vivo. For those workers dealing with massive data sets, the book discusses the methodological aspects of data analysis and informatics in the design of microarray experiments, the choice of test statistic, and the assessment of observational significance, data reduction, and clustering.
"Applied Computational Genomics" focuses on an in-depth review of statistical development and application in the area of human genomics including candidate gene mapping, linkage analysis, population-based, genome-wide association, exon sequencing and whole genome sequencing analysis. The authors are extremely experienced in the area of statistical genomics and will give a detailed introduction of the evolution in the field and critical evaluations of the advantages and disadvantages of the statistical models proposed. They will also share their views on a future shift toward translational biology. The book will be of value to human geneticists, medical doctors, health educators, policy makers, and graduate students majoring in biology, biostatistics, and bioinformatics. Dr. Yin Yao Shugart is investigator in the Intramural Research Program at the National Institute of Mental Health, Bethesda, Maryland USA. "
A remarkable spectrum of novel immunoreceptors sharing related immunoglobulin-like domains and signaling potential has been identified in recent years. These receptors have attracted widespread interest because they resemble the TCR, BCR, and FcR complexes in their ability to serve as activating or inhibitory receptors on the cells that bear them. Moreover, they are well positioned to affect both innate and adaptive immunity. The full range of ligands for these new receptor families is still not known, and understanding of their physiological roles is far from complete. This volume is the first attempt to summarize and highlight all known aspects of immunoglobulin-like receptors, providing a topical overview of the roles and characteristic features of the immunoglobulin-like receptors and related molecules in the immune system. Researchers in immunology, molecular biology, cell biology, clinical medicine, and pharmacology will find this book invaluable.
Nuclear Transfer Protocols: Cell Reprogramming and Transgenesis is a comprehensive review of nuclear transfer technology in vertebrates, aimed at reprogramming differentiated nuclei and effecting targeted gene transfer. The emphasis here is on providing readily reproducible techniques for the gene- tion of cloned embryos and animals in a number of key research and commercially important vertebrates. Additional chapters provide alternative cutting-edge methods for nuclear transfer, such as zona-free nuclear transfer and serial nuclear transfer. Of immense practical benefit are descriptions of procedures associated with cloning, such as in vitro maturation of oocytes, activation and culture of cloned embryos, maintenance of pregnancy, and neonatal care of clones. Nuclear Transfer Protocols: Cell Reprogramming and Transgenesis also provides an understanding of the factors involved in nuclear reprogramming, which is imperative for the success of cloning. A section dealing with such cloning-related issues as aging and normality of clones is also included making this an essential comprehensive handbook for research and commercial labo- tories involved in, or intending to work on, nuclear transfer. The volume will prove beneficial to molecular biologists, stem cell biologists, clinicians, biotechnologists, students, veterinarians, and animal care technicians involved with reprogramming, nuclear transfer, and transgenesis.
This book facilitates the introduction of SAGE into the laboratory and provides a framework for interpreting and comparing data derived from SAGE experiments. SAGE studies encompass 50,000 tags and can provide detailed knowledge of the 2000 most highly expressed genes in the tissue sample. The SAGE protocols presented are detailed, fully annotated, and tested, and are all written by experienced SAGE researchers from around the world.
Fluorescent nucleic acid probes, which use energy transfer, include such constructs as molecular beacons, molecular break lights, Scorpion primers, TaqMan probes, and others. These probes signal detection of their targets by changing either the intensity or the color of their fluorescence. Not surpr- ingly, these luminous, multicolored probes carry more flashy names than their counterparts in the other fields of molecular biology. In recent years, fluor- cent probes and assays, which make use of energy transfer, have multiplied at a high rate and have found numerous applications. However, in spite of this explosive growth in the field, there are no manuals summarizing different p- tocols and fluorescent probe designs. In view of this, the main objective of Fluorescent Energy Transfer Nucleic Acid Probes: Designs and Protocols is to provide such a collection. Oligonucleotides with one or several chromophore tags can form fluor- cent probes capable of energy transfer. Energy transport within the probe can occur via the resonance energy transfer mechanism, also called Foerster tra- fer, or by non-Foerster transfer mechanisms. Although the probes using Foerster transfer were developed and used first, the later non-Foerster-based probes, such as molecular beacons, now represent an attractive and widely used option. The term "fluorescent energy transfer probes" in the title of this book covers both Foerster-based fluorescence resonance energy transfer (FRET) probes and probes using non-FRET mechanisms. Energy transfer probes serve as molecule-size sensors, changing their fluorescence upon detection of various DNA reactions.
Chromosomes Today, Volume 13 includes the plenary lectures presented at the 13th International Chromosome Conference, covering the most recent advances in the studies on chromosomes. The contributions in this volume were presented by some of the world's leaders in cytogenetic and molecular research and outline the present status of knowledge on the composition, structure, function and evolution of chromosomes, including, among others, the advancement of the human genome project. The use of cytogenetic studies has greatly increased in the last few years, resulting in a progressive improvement in the available methods that has consequently allowed a more detailed analysis of the molecular organization of eukaryotic chromosomes and a precise in situ localisation of specific gene sequences. This volume of Chromosomes Today provides up-to-date information regarding the topics at the forefront of chromosome research: genetic regulation, imprinting, DNA duplication, meiotic pairing, and the regulation of the...
Computational neurosciences and systems biology are among the main domains of life science research where mathematical modeling made a difference. This book introduces the many different types of computational studies one can develop to study neuronal systems. It is aimed at undergraduate students starting their research in computational neurobiology or more senior researchers who would like, or need, to move towards computational approaches. Based on their specific project, the readers would then move to one of the more specialized excellent textbooks available in the field. The first part of the book deals with molecular systems biology. Functional genomics is introduced through examples of transcriptomics and proteomics studies of neurobiological interest. Quantitative modelling of biochemical systems is presented in homogeneous compartments and using spatial descriptions. A second part deals with the various approaches to model single neuron physiology, and naturally moves to neuronal networks. A division is focused on the development of neurons and neuronal systems and the book closes on a series of methodological chapters. From the molecules to the organ, thinking at the level of systems is transforming biology and its impact on society. This book will help the reader to hop on the train directly in the tank engine.
This detailed volume addresses recent developments in phosphoproteomic techniques with a particular focus on the plant system. Over the recent decades, proteomic methods were refined to study the significance and dynamics of protein phosphorylation in various biological contexts. However, working with plant tissue imposes particular challenges to the biologist which are attributed to the rigid cell wall making protein extraction more difficult, the skewed protein abundance with Rubisco as a highly abundant protein and a large central vacuole leading to low protein yield and increased degradative enzyme activity. The methodologies in this book seek to move beyond these issues. Written for the Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Practical and authoritative, Plant Phosphoproteomics: Methods and Protocols serves as an ideal reference for researchers investigating this vital area of plant science.
In this fully revised edition of an established classic, expert researchers and clinicians describe in step-by-step detail updated techniques for the isolation and growth of major primary cell types, such as kidney proximal tubule cells, hepatocytes, keratinocytes, and cardiomyocytes. The authors offer readily reproducible new methods for the differentiation of embryonic stem (ES) cells into various hematopoietic cell types, for fetal thymic organ culture, and for the isolation and culture of specialized cell types, such as mammary progenitor cells, skeletal muscle myofibers, mesenchymal cells, neural stem cells, hematopoietic cells, stromal cell lines, and endothelial cells. Additional chapters describe new techniques (leukocyte rolling, isolation of side-population cells, and scalable production of ES-derived cells) and detail quality control methods for cell lines (detection and elimination of mycoplasma, DNA fingerprinting, and cytogenetic analysis).
This book discusses feature engineering and computational intelligence solutions for ECG monitoring, with a particular focus on how these methods can be efficiently used to address the emerging challenges of dynamic, continuous & long-term individual ECG monitoring and real-time feedback. By doing so, it provides a "snapshot" of the current research at the interface between physiological signal analysis and machine learning. It also helps clarify a number of dilemmas and encourages further investigations in this field, to explore rational applications of feature engineering and computational intelligence in ECG monitoring. The book is intended for researchers and graduate students in the field of biomedical engineering, ECG signal processing, and intelligent healthcare.
Highly experienced researchers describe in step-by-step detail methods that have proven most useful in delivering genes to mammalian cells. Volume 1: Nonviral Gene Transfer Techniques focuses on gene delivery by a variety of chemical and physical methods, including ultrasound, biolistics, peptides, PNA clamps, liposomes, microinjection, electroporation, particle bombardment, dendrimers, and hydrodynamics. An accompanying volume, Volume 2: Viral Gene Transfer Techniques, details procedures for delivering genes to cells in vitro and in vivo, including the use of lentiviral vectors.
There has been an enormous advance in our understanding of the
regulation of the cell division cycle in the last five years. The
leap in understanding has centered on the cell cycle control
protein p34cdc2 and its congeners and on the cyclins. The most
important insight to emerge has been that cell cycle control
mechanisms and their participating proteins are very well-conserved
through evolution. This has created a spectacular growth in
knowledge as data from one organism have been readily applied to
another. In this volume, there are sea urchin and frog eggs, as
well as mammalian cells and yeast. There is also an illustration of
how fruitful the genetic approach can be in other organisms than
yeast with a chapter on "Aspergillus nidulans."
A wide-ranging collection of readily reproducible methods for performing nuclear reprogramming by nuclear transfer in several different species, by fusion through both chemical treatment and electrically shocking cells, and by in vivo treatment of cells with cell extracts. Several methods of monitoring nuclear reprogramming are also presented, including the use of transgenic markers, activation of telomerase as an ES-specific marker, light and electron microscopic observation of structural changes in the nucleus, and verification of surface marker expression and the differentiation potential of stem cells. Biochemical methods are provided for the examination of chromatin protein modifications, nucleosomal footprinting, transcription factor binding, and the study of DNA methylation changes both at the specific locus level and at the level of the whole nucleus.
Plant molecular biology has produced an ever-increasing flood of data about genes and genomes. Evolutionary biology and systematics provides the context for synthesizing this information. This book brings together contributions from evolutionary biologists, systematists, developmental geneticists, biochemists, and others working on diverse aspects of plant biology whose work touches to varying degrees on plant molecular evolution. The book is organized in three parts, the first of which introduces broad topics in evolutionary biology and summarizes advances in plant molecular phylogenetics, with emphasis on model plant systems. The second segment presents a series of case studies of gene family evolution, while the third gives overviews of the evolution of important plant processes such as disease resistance, nodulation, hybridization, transposable elements and genome evolution, and polyploidy.
For over forty years, mesenchymal stem cells (MSCs) have been scrutinized and studied, garnering much attention due to their broad therapeutic efficacy. In Mesenchymal Stem Cells: Methods and Protocols, leaders in the field were assembled to contribute detailed methodologies for the isolation and characterization of human and rodent MSCs. Recently, these vital cells have shown therapeutic benefits in the treatment of myocardial infarction, stroke, lung diseases, spinal cord injury and other neurological disorders, thus promising a boundless future in their study. Cutting edge and easy to use, Mesenchymal Stem Cells: Methods and Protocols is the perfect resource for scientists attempting to pursue this important and ever-developing field of research.
For more than four decades, Molecular Biology of the Cell has distilled the vast amount of scientific knowledge to illuminate basic principles, enduring concepts, and cutting-edge research. The Seventh Edition has been extensively revised and updated with the latest research, and has been thoroughly vetted by experts and instructors. The classic companion text, The Problems Book, has been reimagined as the Digital Problems Book in Smartwork, an interactive digital assessment course with a wide selection of questions and automatic-grading functionality. The digital format with embedded animations and dynamic question types makes the Digital Problems Book in Smartwork easier to assign than ever before-for both in-person and online classes.
During the past twenty years Listeria monocytogenes has emerged as one of the most intensely studied bacterial pathogens. New windows are constantly being opened into the complexity of host cell biology and the interplay of the signals connecting the various cells and organs involved in the host response. This volume includes research from studies at the molecular level on the pathogenesis of Listeria monocytogenes and the response of the host to its infections.
All three peroxisome proliferator-activated receptor (PPAR) subtypes share a high degree of structural homology but differ in function, tissue distribution and ligand specificity. PPARs play critical roles as regulators of numerous physiological as well as pathophysiological pathways, and efforts are currently underway to fully characterize their functioning and to develop safer and more effective PPAR modulators to treat a myriad of diseases and conditions. In Peroxisome proliferator-Activated Receptors: Methods and Protocols, renowned experts in the PPAR arena provide detailed protocols for investigating these receptors. Chapters contain methods ranging from the cloning of receptors to their knockdown, to protocols exploring posttranslational modifications of PPARs and coactivators, as well as receptor subcellular localization. Also assembled are methods to evaluate the involvement of these receptors in behavior functions, an emerging facet in PPAR research. Written in the successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. With its well-honed methodologies, Peroxisome proliferator-Activated Receptors: Methods and Protocols, will be a useful resource for all seeking to advance their knowledge of this field.
This book outlines 11 courses and 15 research topics in bioinformatics, based on curriculums and talks in a graduate summer school on bioinformatics that was held in Tsinghua University. The courses include: Basics for Bioinformatics, Basic Statistics for Bioinformatics, Topics in Computational Genomics, Statistical Methods in Bioinformatics, Algorithms in Computational Biology, Multivariate Statistical Methods in Bioinformatics Research, Association Analysis for Human Diseases: Methods and Examples, Data Mining and Knowledge Discovery Methods with Case Examples, Applied Bioinformatics Tools, Foundations for the Study of Structure and Function of Proteins, Computational Systems Biology Approaches for Deciphering Traditional Chinese Medicine, and Advanced Topics in Bioinformatics and Computational Biology. This book can serve as not only a primer for beginners in bioinformatics, but also a highly summarized yet systematic reference book for researchers in this field. Rui Jiang and Xuegong Zhang are both professors at the Department of Automation, Tsinghua University, China. Professor Michael Q. Zhang works at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
In Peptide Modifications to Increase Metabolic Stability and Activity, expert researchers in the field provide summarized methods for preparation, purification of modified peptides, and assessment of their biochemical activities. These methods and protocols include preparation of conformationally constrained peptides, modification of peptide bonds, introduction of nonproteinogenic amino acids, and alteration of peptides' physical and biological properties by modification of the amino acid side chains and/or terminal residues. With additional chapter that describes new experimental approach for the detection of exogenous peptides within living cells using peptides labeled with heavy isotopes and confocal Raman microscopy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Peptide Modifications to Increase Metabolic Stability and Activity seeks to provide scientists with alternative approaches to peptide modification that many researchers may find applicable to their specific research requirements.
The diverse applications in this volume range from the study of allosteric regulation of ion channel activity using a classic mutagenesis approach, to the study of channel subunit stoichiometry using a novel biophysical approach based on fluorescence resonance energy transfer. Highlights include methods for heterologous expression of ion channels in cells, for determining channel structure-function, and for studying channel regulation.
This volume, written by experts in the field, discusses the current understanding of the biophysical principles that govern RNA folding, with featured RNAs including the ribosomal RNAs, viral RNAs, and self-splicing introns. In addition to the fundamental features of RNA folding, the central experimental and computational approaches in the field are presented with an emphasis on their individual strengths and limitations, and how they can be combined to be more powerful than any method alone; these approaches include NMR, single molecule fluorescence, site-directed spin labeling, structure mapping, comparative sequence analysis, graph theory, course - grained 3D modeling, and more. This volume will be of interest to professional researchers and advanced students entering the field of RNA folding. |
![]() ![]() You may like...
|