![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Molecular biology
This book contains articles written by experts on a wide range of topics that are associated with the analysis and management of biological information at the molecular level. It contains chapters on RNA and protein structure analysis, DNA computing, sequence mapping, genome comparison, gene expression data mining, metabolic network modeling, and phyloinformatics. The important work of some representative researchers in bioinformatics is brought together for the first time in one volume. The topic is treated in depth and is related to, where applicable, other emerging technologies such as data mining and visualization. The goal of the book is to introduce readers to the principle techniques of bioinformatics in the hope that they will build on them to make new discoveries of their own. Contents: Exploring RNA Intermediate Conformations with the Massively Parallel Genetic Algorithm; Introduction to Self-Assembling DNA Nanostructures for Computation and Nanofabrication; Mapping Sequence to Rice FPC; Graph Theoretic Sequence Clustering Algorithms and their Applications to Genome Comparison; The Protein Information Resource for Functional Genomics and Proteomics; High-Grade Ore for Data Mining in 3D Structures; Protein Classification: A Geometric Hashing Approach; Interrelated Clustering: An Approach for Gene Expression Data Analysis; Creating Metabolic Network Models Using Text Mining and Expert Knowledge; Phyloinformatics and Tree Networks. Readership: Molecular biologists who rely on computers and mathematical scientists with interests in biology.
Since the discovery of a collagen-degrading protease in the tadpole tail in 1962, matrix metalloproteinase research has led to the discovery of more than twenty distinct vertebrate MMPs, along with a variety of homologues from diverse organisms such as the sea urchin, plants, insects, and nematode worms. Fully updating and adding to the popular first edition, Matrix Metalloproteinase Protocols, Second Edition includes a series of state-of-the-art techniques provided by eminent experts in the field. Beginning with a brief overview of the MMP arena, from how these enzymes fit into the larger degradome to what occurs when their expression and function in the mouse is modulated, the volume continues with sections on the expression and purification of MMPs and TIMPs, the detection of MMPs and TIMPs at both the protein and mRNA level, and our ability to assay MMP and TIMP activities in a wide variety of circumstances. Written in the highly successful Methods in Molecular Biology series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Matrix Metalloproteinase Protocols, Second Edition is an ideal source for many of the essential laboratory techniques for both novice and seasoned researchers alike collected in one convenient volume.
The novel coronavirus disease 2019 (COVID-19) pandemic has posed a major threat to human life and health. This book is beneficial for interdisciplinary students, researchers, and professionals to understand COVID-19 and how computational intelligence can be used for the purpose of surveillance, control, prevention, prediction, diagnosis, and potential treatment of the disease. The book contains different aspects of COVID-19 that includes fundamental knowledge, epidemic forecast models, surveillance and tracking systems, IoT- and IoMT-based integrated systems for COVID-19, social network analysis systems for COVID-19, radiological images (CT, X-ray) based diagnosis system, and computational intelligence and in silico drug design and drug repurposing methods against COVID-19 patients. The contributing authors of this volume are experts in their fields and they are from various reputed universities and institutions across the world. This volume is a valuable and comprehensive resource for computer and data scientists, epidemiologists, radiologists, doctors, clinicians, pharmaceutical professionals, along with graduate and research students of interdisciplinary and multidisciplinary sciences.
The book is based on lectures presented on the International Summer School on Biophysics held in Croatia in September 2009. The advantage of the School is that it provides advanced training in very broad scope of areas related to biophysics contrary to other similar schools or workshops that are centered mainly on one topic or technique. In this volume, tenth in the row, the papers in the field of biophysics are presented. The topics are biological phenomena from single protein to macromolecular aggregations structure by using variant physical methods (NMR, EPR, FTIR, Mass Spectrometry, etc.). The interrelationship of supramolecular structures and their functions is enlightened by applications of principals of these physical methods in the biophysical and molecular biology context.
Biological interactions of visible light with photosensitizers have been studied for over a century while controlled clinical applications of light and photosensitizers to treat solid tumors, known as photodynamic therapy, have been evolving since the mid 1970's. In Photodynamic Therapy: Methods and Protocols, leading PDT scientists and clinicians provide the first comprehensive collection of methods and protocols specifically related to relevant mechanistic, dosimetric, preclinical, and clinical procedures used in current PDT research. Reflecting the growing number of studies demonstrating that immunological, tumor microenvironmental, and vascular responses are all contributing to PDT treatment outcomes, the contents of this volume move beyond the more traditional PDT concepts in order to investigate the numerous signal transduction and cell death pathways involved. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes which highlight tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Photodynamic Therapy: Methods and Protocols is an ideal guide for new investigators just starting out in PDT research as well as seasoned investigators changing the direction of their research with the intention of exploring this vital field of study."
This manual offers a stand-alone reading companion, unique in simplifying the practical components of Bioinformatics in a unique and user-friendly manner. It covers the practical component of syllabi used at most leading universities and discusses the most extensively used tools and methodologies in Bioinformatics. Research in the biological sciences has made tremendous strides in recent years due in part to the increased automation in data generation. At the same time, storing, managing and interpreting huge volumes of data has become one of the most challenging tasks for scientists. These two aspects have ultimately necessitated the application of computers, giving rise to a highly interdisciplinary discipline-Bioinformatics. Despite the richness of bioinformatics resources and methods, the exposure of life sciences undergraduates and postgraduates to bioinformatics is extremely limited. Though the internet offers various tools for free, and provides guides for using them, it fails to help users interpret the processed data. Moreover, most sites fail to update their help pages to accommodate software upgrades. Though the market is flooded with books discussing the theoretical concepts in Bioinformatics, a manual of this kind is rarely found. The content developed to meet the needs of readers from diverse background and to incorporate the syllabi of undergraduate and postgraduate courses at various universities.
This book sheds new light on the physiology, molecular biology and pathophysiology of epithelial ion channels and transporters. It combines the basic cellular models and functions by means of a compelling clinical perspective, addressing aspects from the laboratory bench to the bedside. The individual chapters, written by leading scientists and clinicians, explore specific ion channels and transporters located in the epithelial tissues of the kidney, intestine, pancreas and respiratory tract, all of which play a crucial part in maintaining homeostasis. Further topics include the fundamentals of epithelial transport; mathematical modeling of ion transport; cell volume regulation; membrane protein folding and trafficking; transepithelial transport functions; and lastly, a discussion of transport proteins as potential pharmacological targets with a focus on the pharmacology of potassium channels.
Over the last two decades advances in genotyping technology, and the development of quantitative genetic analytical techniques have made it possible to dissect complex traits and link quantitative variation in traits to allelic variation on chromosomes or quantitative trait loci (QTLs). In Quantitative Trait Loci (QTLs):Methods and Protocols, expert researchers in the field detail methods and techniques that focus on specific components of the entire process of quantitative train loci experiments. These include methods and techniques for the mapping populations, identifying quantitative trait loci, extending the power of quantitative trait locus analysis, and case studies. Written in the highly successful Methods in Molecular Biology (TM) series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Quantitative Trait Loci (QTLs):Methods and Protocols aids scientists in the further study of the links between phenotypic and genotypic variation in fields from medicine to agriculture, from molecular biology to evolution to ecology.
In Pseudomonas aeruginosa, expert researchers in the field detail many of the methods which are now commonly used to study this fascinating microorganism. Chapters include microbiological methods to high-throughput molecular techniques that have been developed over the last decade. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Pseudomonas aeruginosa aids in the continuing study of new and cutting edge findings.
Signal transduction comprises the intracellular biochemical signals which induce the appropriate cell response to an external stimulus. The players in signal transduction are diverse, from small molecules as first messengers, to proteins, receptors, transcription factors, among many others. The different signaling pathways and the crosstalk between them originates the unique signaling profile of every cell type in the human body. The cell signaling specificity depends on several aspects including protein composition, subcellular localization and complexes and gene promoters. This textbook provides a comprehensive overview of the specific signaling pathways on a variety of human tissues. This information can be of great value for health science researchers, professionals and students to understand key pathways for tissue-specific functions in the plethora of signals, signals receptors, transducers and effectors. Chapter 3 and 15 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This volume reviews the most important recent findings of the studies on pathogenic E. coli providing a timely overview of the field. The topics covered include epidemiology of the disease in humans and animals and the biological mechanisms that shaped the pathogenic types of E. coli; shiga toxins; subtilase cytotoxin; cell cycle modulating toxins; the heat stable and heat labile exterotoxins; and much more.
The book introduces the bioinformatics tools, databases and strategies for the translational research, focuses on the biomarker discovery based on integrative data analysis and systems biological network reconstruction. With the coming of personal genomics era, the biomedical data will be accumulated fast and then it will become reality for the personalized and accurate diagnosis, prognosis and treatment of complex diseases. The book covers both state of the art of bioinformatics methodologies and the examples for the identification of simple or network biomarkers. In addition, bioinformatics software tools and scripts are provided to the practical application in the study of complex diseases. The present state, the future challenges and perspectives were discussed. The book is written for biologists, biomedical informatics scientists and clinicians, etc. Dr. Bairong Shen is Professor and Director of Center for Systems Biology, Soochow University; he is also Director of Taicang Center for Translational Bioinformatics.
This book provides insights into some of the key achievements made in the study of Lotus japonicus (birdsfoot trefoil), as well as a timely overview of topics that are pertinent for future developments in legume genomics. Key topics covered include endosymbiosis, development, hormone regulation, carbon/nitrogen and secondary metabolism, as well as advances made in high-throughput genomic and genetic approaches. Research focusing on model plants has underpinned the recent growth in plant genomics and genetics and provided a basis for investigations of major crop species. In the legume family Fabaceae, groundbreaking genetic and genomic research has established a significant body of knowledge on Lotus japonicus, which was adopted as a model species more than 20 years ago. The diverse nature of legumes means that such research has a wide potential and agricultural impact, for example, on the world's protein production.
Classical natural product chemistry is transitioning to modern day metabolomics as a result of the advent of comprehensive analytical platforms and sensitive analytical instrumentation. Therefore, it is worthwhile to summarize recent developments with current analytical platforms and highlight how metabolomics is being integrated into this classical field to dereplicate and profile natural product extracts. Metabolomics Tools for Natural Product Discoveries: Methods and Protocols aims to unite diverse and recently developed methodologies and protocols in order to identify bioactive secondary metabolites for the purpose of drug discovery. Some topics covered in this volume include applications for the extraction of selected natural products from less common sources such as bryophytes and hard corals, various biological assays, comprehensive applications and strategies for GC-MS, LC-MS, and NMR, as well as protocols and strategies for the structure elucidation of isolated natural products. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible Metabolomics Tools for Natural Product Discoveries: Methods and Protocols seeks to serve both professionals and research students with its well-honed methodologies for natural product isolation, biomarker discovery, dereplication, biological assays, and comprehensive metabolomic platforms available for high-throughput analyses.
Molecular Signalling: Ca2+-Signaling in Cardiac Myocytes: Evidence from Evolutionary and Transgenic Models; M. Morad, Y.J. Suzuki. Diastolic Viscoelastic Properties of Rat Cardiac Muscle; Involvement of Ca2+; B.D.M.Y. Stuyvers, et al. The Contractile Mechanism and Energetics: Molecular Control of Myocardial Mechanics and Energetics: The Chemo-Mechanical Conversion; A. Landesberg. Myocardial Cell Energetics; H. Kammermeier. Cardiac Mechanics and Flow Dynamics: How Cardiac Contraction Affects the Coronary Vasculature; N. Westerhof, et al. Dynamic Interaction between Myocardial Contracton and Coronary Flow; R. Beyar, S. Sideman. Vascular Structure and Remodeling: Endothelial Gene Regulation by Laminar Shear Stress; N. Resnick, et al. Myocardial Structure and Function. Tissue Remodeling with Micro-Structurally Based Material Laws; P. Hunter, T. Arts. Electrical Activation and Propagation: Cardiac Excitation: An Interactive Process of Ion Channels and Gap Junctions; Y. Rudy, R.M. Shaw. The Cardionome: Concepts in Modeling: Design and Strategy for the Cardionome Project; J.B. Bassingthwaighte. 20 Additional Chapters. Index.
Volume 6 of Biomembranes covers transmembrane receptors and
channels. A particularly important role for the membrane is that of
passing messages between a cell and its environment. Part I of this
volume covers receptors for hormones and growth factors. Here, as
in so many other areas of cell biology, the application of the
methods of molecular biology have led to the recognition of a
number of families of receptors. Typically, such receptors contain
an extracellular ligand binding domain, a transmembrane domain, and
an intracellular catalytic domain whose activation, as a result of
ligand binding, leads to generation of second messengers within the
cell and stimulation of a range of cytosolic enzymes. An
alternative signaling strategy, exploited in particular in the
nervous system, is to use ion channels to allow controlled movement
of monovalent (Na+, K+) or divalent (Ca2+) cations in or out of the
cell, resulting in changes in membrane potential or alterations in
the intracellular concentration of Ca2+. Part II of this volume is
concerned with these ion channels and with other, often simpler,
ion channel systems whose study can throw light on channel
mechanism.
This book discusses the paradigm-shifting phenomenon of intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs). The properties of IDPs and IDPRs are highly complementary to those deriving from the presence of a unique and well-defined three-dimensional fold. Ignored for a long time in high-resolution studies of proteins, intrinsic protein disorder is now recognized as one of the key features for a large variety of cellular functions, where structural flexibility presents a functional advantage in terms of binding plasticity and promiscuity and this volume explores this exciting new research. Recent progress in the field has radically changed our perspective to study IDPs through NMR: increasingly complex IDPs can now be characterized, a wide range of observables can be determined reporting on the structural and dynamic properties, computational methods to describe the structure and dynamics are in continuous development and IDPs can be studied in environments as complex as whole cells. This volume communicates the new exciting possibilities offered by NMR and presents open questions to foster further developments. Intrinsically Disordered Proteins Studied by NMR Spectroscopy provides a snapshot to researchers entering the field as well as providing a current overview for more experienced scientists in related areas.
In this book, plant biology is considered from the perspective of plants and their surrounding environment, including both biotic and abiotic interactions. The intended audience is undergraduate students in the middle or final phases of their programs of study. Topics are developed to provide a rudimentary understanding of how plant-environment interactions span multiple spatiotemporal scales, and how this rudimentary knowledge can be applied to understand the causes of ecosystem vulnerabilities in the face of global climate change and expansion of natural resource use by human societies. In all chapters connections are made from smaller to larger scales of ecological organization, providing a foundation for understanding plant ecology. Where relevant, environmental threats to ecological systems are identified and future research needs are discussed. As future generations take on the responsibility for managing ecosystem goods and services, one of the most effective resources that can be passed on is accumulated knowledge of how organisms, populations, species, communities and ecosystems function and interact across scales of organization. Molecular Biology is intended to provide some of that knowledge, and hopefully provide those generations with the ability to avoid some of the catastrophic environmental mistakes that prior generations have made.
This book describes the molecular biology, pathogenesis, epidemiology, and potential strategies for control of chikungunya virus (CHIKV) infection. It offers insight into the structure and functions of CHIKV proteins as they relate to host response, interaction with the arthropod vector, and vaccination. A detailed account of both the epidemiological outlook and the clinical syndrome of CHIKV infection is provided. The complex host-virus interaction and the signaling pathways that mediate such interactions are also covered. Throughout the book, graphics and charts are used to provide stimulating discussion on important findings in the field of chikungunyalogy. The chapters are written with a global perspective by experts of CHIKV from around the world. This project is especially significant given that CHIKV is a pathogen of worldwide public health concern. Although the presence of CHIKV infection is not global yet, worldwide dissemination is predicted in the future due largely to the lack of effective treatment/therapy, efficient control of transmission, and knowledge about mechanisms of pathogenesis. Additionally, globalization of CHIKV is predicated on its mode of dissemination (mosquito vector) and cross border travel and migration.
This manual offers detailed protocols for fluorescence in situ hybridization (FISH) and comparative genomic hybridization approaches, which have been successfully used to study various aspects of genomic behavior and alterations. Methods using different probe and cell types, tissues and organisms, such as mammalians, fish, amphibians (including lampbrush-chromosomes), insects, plants and microorganisms are described in 57 chapters. In addition to multicolor FISH procedures and special applications such as the characterization of marker chromosomes, breakpoints, cryptic aberrations, nuclear architectures and epigenetic changes, as well as comparative genomic hybridization studies, this 2nd edition describes how FISH can be combined with other techniques. The latter include immunostaining, electron microscopy, single cell electrophoresis and microdissection. This well-received application guide provides essential protocols for beginning FISHers and FISH experts alike working in the fields of human genetics, microbiology, animal and plant sciences.
"Metabolic Flux Analysis: Methods and Protocols "opens up the field of metabolic flux analysis to those who want to start a new flux analysis project but are overwhelmed by the complexity of the approach. Metabolic flux analysis emerged from the current limitation for the prediction of metabolic fluxes from a measured inventory of the cell. Divided into convenient thematic parts, topics in this essential volume include the fundamental characteristics of the underlying networks, the application of quantitative metabolite data and thermodynamic principles to constrain the solution space for flux balance analysis (FBA), the experimental toolbox to conduct different types of flux analysis experiments, the processing of data from 13C experiments and three chapters that summarize some recent key findings. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Metabolic Flux Analysis"" Methods and Protocols" presents protocols that cover a range of relevant organisms currently used in the field, providing a solid basis to anybody interested in the field of metabolic flux analysis.
This book is devoted to Slime mould Physarum polycephalum, which is a large single cell capable for distributed sensing, concurrent information processing, parallel computation and decentralized actuation. The ease of culturing and experimenting with Physarum makes this slime mould an ideal substrate for real-world implementations of unconventional sensing and computing devices The book is a treatise of theoretical and experimental laboratory studies on sensing and computing properties of slime mould, and on the development of mathematical and logical theories of Physarum behavior. It is shown how to make logical gates and circuits, electronic devices (memristors, diodes, transistors, wires, chemical and tactile sensors) with the slime mould. The book demonstrates how to modify properties of Physarum computing circuits with functional nano-particles and polymers, to interface the slime mould with field-programmable arrays, and to use Physarum as a controller of microbial fuel cells. A unique multi-agent model of slime is shown to serve well as a software slime mould capable for solving problems of computational geometry and graph optimization. The multiagent model is complemented by cellular automata models with parallel accelerations. Presented mathematical models inspired by Physarum include non-quantum implementation of Shor's factorization, structural learning, computation of shortest path tree on dynamic graphs, supply chain network design, p-adic computing and syllogistic reasoning. The book is a unique composition of vibrant and lavishly illustrated essays which will inspire scientists, engineers and artists to exploit natural phenomena in designs of future and emergent computing and sensing devices. It is a 'bible' of experimental computing with spatially extended living substrates, it spanstopics from biology of slime mould, to bio-sensing, to unconventional computing devices and robotics, non-classical logics and music and arts.
This volume introduces databases containing the results from the recent revolution in sequencing technologies. Chapters in Plant Genomics Databases: Methods and Protocols describe database content, as well as typical use-cases. Some chapters explore databases that primarily present genome sequences focusing on one or a few related species, while others include additional datatypes and/or data from various plant species. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Plant Genomics Databases: Methods and Protocols is a valuable resource for providing clear guidance in accessing an important collection of plant databases that can be used to add biological value to genomic data.
Considerable advances have been made in our understanding of the eukaryotic cell cycle at the molecular level over the past two decades or so, particularly in yeast and in animal systems. However, only in the past three or four years has progress been made in plants at the molecular level. The present volume brings together molecular biologists, cell biologists and physiologists to discuss this recent progress and how it related to our understanding of the regulation of plant growth and development. The opening paper summarises the progress which has been made with fission yeast. Subsequent papers explore what is known about cell cycle control at the molecular level in plants, and about cell cycle regulation in specific physiological systems, ending with summary papers on cell division in roots and shoots. The book comprises up-to-date findings on a fundamental aspect of plant growth and development, and as such should be of particular interest to advanced undergraduates, postgraduates and research scientists in the fields of molecular biology, cell biology and physiology. |
![]() ![]() You may like...
|