![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > The hydrosphere > Oceanography (seas)
The carbon dioxide absorption and gas exchange at the sea surface, marine aerosols and their photochemistry, the oceanic carbon cycle as well as biomarkers in marine ecosystems, and related topics are of primary importance for understanding our global ecosystem. The topics addressed in this volume are all stemming from areas which have developed only in the last ten years of research or which have gone into decidedly new directions in that time. In most cases, the recent research has been driven by advances in instrumentation or by large-scale international cooperations. Thus this volume is also aiming at interdisciplinary and international cooperations in the future.
A thorough understanding of planktonic organisms is the first step towards a real appreciation of the diversity, biology, and ecological importance of marine life. A detailed knowledge of their distribution and community composition is particularly important since these organisms are often very delicate and sensitive to change, and can be used as early indicators of environmental change. Natural and man-induced modification of the environment can affect both the distribution and composition of plankton, with important ecological and economic impacts. Marine Plankton provides a practical guide to plankton biology with a large geographic coverage spanning the North Sea to the north-eastern Atlantic coast of the USA and Canada. The book is divided into three sections: an overview of plankton ecology, an assessment of methodology in plankton research covering sampling, preservation, and counting of samples, and a taxonomic guide richly illustrated with detailed line drawings to aid identification. This is an essential reference text suitable for senior undergraduate and graduate students taking courses in marine ecology (particularly useful for fieldwork) as well as for professional marine biologists. It will also be of relevance and use to environmental scientists, conservation biologists, marine resource managers, environmental consultants, and other specialised practitioners.
This monograph creates a systematic interpretation of the
theoretical and the most actual experimental aspects of the
internal wave dynamics in the ocean. Firstly, it draws attention to
the important physical effects from an oceanographical point of
view which are presented in mathematical descriptions. Secondly,
the book serves as an introduction to the range of modern ideas and
the methods in the study of wave processes in dispersive
media.
This book is about marine seismic sources, their history, their physical principles and their deconvolution. It is particularly accented towards the physical aspects rather than the mathematical principles of signature generation in water as it is these aspects which the authors have found to be somewhat neglected. A huge amount of research has been carried out by both commercial and academic institutions over the years and the resulting literature is a little daunting, to say the least. In spite of this, the subject is intrinsically very simple and relies on a very few fundamental physical principles, a somewhat larger number of heuristic principles and a refreshingly small amount of blunderbuss mathematics. As such it is still one of those subjects in which the gifted practical engineer reigns supreme and from which many of the important advances have originated. In Chapter 1 of the book, the underlying physics and concepts are discussed, including pressure and wave propagation, bubble motion, virtual images and the factors determining choice of source. In marine reflection seismology, almost all of the seismic data acquired currently is done with either the airgun or the watergun, which rely on the expulsion of air and water respectively to generate acoustic energy. As a consequence, the discussion in this chapter is geared towards these two sources, as is much of the rest of the book.
Stable Isotope Geochemistry is an introduction to the use of stable isotopes in the geosciences. It is subdivided into three parts: theoretical and experimental principles; fractionation processes of light and heavy elements; the natural variations of geologically important reservoirs. Since the application of stable isotopes to earth sciences has grown in the last few years, a new edition appears necessary. Recent progress in analysing the rare isotopes of certain elements for instance allow the distinction between mass-dependent and mass-independent fractionations. Special emphasis has been given to the growing field of "heavy" elements. Many new references have been added, which will enable quick access to recent literature. For students and scientists alike the book will be a primary source of information with regard to how and where stable isotopes can be used to solve geological problems.
Although numerous books have been written on both monitoring and modelling of coastal oceans, there is a practical need for an introductory multi-disciplinary volume to non-specialists in this field. The articles commisioned for this book, organized into four major themes, are written by experts in their disciplines while the text is intended for scientists who do not have extensive training in marine sciences and coastal zone management. As such, the articles in this monograph can be a valuable reference for practicing professionals. The first section introduces the complex physical processes with main emphasis on waste disposal in the coastal ocean. Following this, examples of instrumentation techniques that are commonly used for measuring different properties of oceans are discribed. Coastal and estuarine transport and dispersion modelling is introduced in the next section with examples from different parts of the world. The last section provides an overview of coastal disasters such as tropical cyclones, storm surges and oil spills.
Radar technology is increasingly being used to monitor the environment. This monograph provides a review of polarimetric radar techniques for remote sensing. The first four chapters cover the basics of mathematical, statistical modelling as well as physical modelling based on radiowave scattering theory. The subsequent eight chapters summarize applications of polarimetric radar monitoring for various types of earth environments, including vegetation and oceans. The last two chapters provide a summary of Western as well as former Soviet Union knowledge and the outlook. This monograph is of value to students, scientists and engineers involved in remote sensing development and applications in particular for environmental monitoring.
Radioecology in Northern Euroepean Seas summarizes an extensive body of literature on the oceanographic and biological conditions involved in the transfer and accumulation of radionuclides in marine sediment and biota of the Northern European seas. Much of the information has been derived through many decades of investigation carried out by the Murmansk Marine Biological Institute. This book presents the original works, augmented and complemented by work conducted by other institutes during the nuclear era. The synthesis of this extensive body of information forms the basis of a new methodological and theoretical framework describing radionuclide bioaccumulation by marine invertebrate and vertebrate animals, paying special attention to marine food webs leading to humans.
The oceans provide a great challenge for the development and management of planet earth by humankind. This book covers new approaches to the development of the law of the sea, the division of the oceans among states, and new thinking on institutions in depth.
This volume has grown from an Autumn School about "Analysis of Climat Variability - Applications of Statistical techniques" on Elba in November 1993. We have included those lectures which referred explicitly to appli cations of statistical techniques in climate science, since we felt that general descriptions of statistical methods, both at the introductory and at advanced level, are already available. We tried to stress the application side, discussing many examples dealing with the analysis of observed data and with the eval uation of model results (Parts I and II). Some effort is also devoted to the treatment of various techniques of pattern analysis (Part III). Methods like teleconnections, EOF, SSA, CCA and POP are becoming routine tools for the climate researcher and it is probably important for graduate students to be exposed to them early in their academic career in a hopefully clear and concise way. A short subject index is included at the end of the volume to assist the reader in the search of selected topics. Rather than attempting to reference every possible occurrence of some topic we have preferred to indicate the page where that topic is more extensively discussed. The Autumn School was part of the training and education activities of the European Programme on Climatology and Natural Hazards (EPOCH), and is continued under the subsequent research programme (ENVIRONMENT 1990-1994). It aimed at students in general, taking first and second year courses at the graduate level."
Humans have always been fascinated by marine life, from extremely small diatoms to the largest mammal that inhabits our planet, the blue whale. However, studying marine life in the ocean is an extremely difficult propo- tion because an ocean environment is not only vast but also opaque to most instruments and can be a hostile environment in which to perform expe- ments and research. The use of acoustics is one way to effectively study animal life in the ocean. Acoustic energy propagates in water more efficiently than almost any form of energy and can be utilized by animals for a variety of purposes and also by scientists interested in studying their behavior and natural history. However, underwater acoustics have traditionally been in the domain of physicists, engineers and mathematicians. Studying the natural history of animals is in the domain of biologists and physiologists. Und- standing behavior of animals has traditionally involved psychologists and zoologists. In short, marine bioacoustics is and will continue to be a diverse discipline involving investigators from a variety of backgrounds, with very different knowledge and skill sets. The inherent inter-disciplinary nature of marine bioacoustics presents a large challenge in writing a single text that would be meaningful to various investigators and students interested in this field. Yet we have embarked on this challenge to produce a volume that would be helpful to not only beginning investigators but to seasoned researchers.
From the bestselling author of Breath, a “fascinating, informative, exhilarating” voyage from the ocean’s surface to its darkest trenches (Wall Street Journal). Fascinated by the sport of freediving—in which competitors descend great depths on a single breath—James Nestor embeds with a gang of oceangoing extreme athletes and renegade researchers. He finds whales that communicate with other whales hundreds of miles away, sharks that swim in unerringly straight lines through pitch-black waters, and other strange phenomena. Most illuminating of all, he learns that these abilities are reflected in our own remarkable, and often hidden, potential—including echolocation, directional sense, and the profound bodily changes humans undergo when underwater. Along the way, Nestor unlocks his own freediving skills as he communes with the pioneers who are expanding our definition of what is possible in the natural world, and in ourselves.
Dramatic advances in understanding global tectonics have been made in the last half century and the information and specific data acquired on the floor of the World Ocean by the scientific community probably has exc- ded that available in all previous time. With the benefit of new technology and advanced concepts in the earth sciences extensive exploration of the deep seabed became possible, and has been carried out in many parts of the world. Many features have been recognized and data recorded that are vital for understanding the fundamental processes that shape the earth=s surface and control the habitable environment. The data collected to date on the o- an floor and its physical environment greatly exceeds our understanding and appreciation of their fundamental importance in the earth sciences, and our ability to apply this knowledge effectively in improving our way of life. With his extensive scientific knowledge and unique experience from - ny cruises in association with scientists throughout the world, Dr. Evgeny Gurvich has made an outstanding contribution in acquiring basic data on hydrothermal and sedimentation processes in the ocean, as well as in the synthesis of data and concepts available from cruise reports and an extensive literature.
Extreme, freak or rogue waves are produced by a number of physical mechanisms that focus the water-wave energy into a small area, due to wave instability, chaotic behaviour, dispersion (frequency modulation), refraction (presence of variable currents or bottom topography), soliton interactions, etc. During the past thirty years a number of physical models of the rogue wave phenomenon have been intensively developed. Numerous experimental, statistical and theoretical investigations are intended to understand the physics of the huge wave formation, its relation to the environmental conditions and to provide a freak wave design for engineering purposes. The book details the vast progress that has been achieved in the understanding of the physical mechanisms of rogue wave phenomenon in recent years. The selected articles address such issues as the formation of freak waves due to modulation instability of nonlinear wave field, physical and statistical properties of rogue wave generation in deep water and in shallow water, various models of nonlinear water waves, special analysis of nonlinear resonances between water waves and the relation between observations and freak wave theories. The book is written for specialists in the fields of fluid mechanics, applied mathematics, nonlinear physics, physical oceanography and geophysics, and for students learning these subjects.
Spatial and temporal averaging of observational data is widely used in many problems of meteorology, hydrology and related sciences. Several averaging methods have been proposed by various scientists and are used on a regular basis to obtain data averaged in space orfand in time, to yield data which are less influenced by random factors than initial point data are. The significance of averaging meteorological fields has substantially increased nowadays in connection with the problem of global climate change. However important as such change may be, it is very small as compared with the natural variability of atmospheric fields. An accurate averaging is absolutely necessary in order to discover a small climate change signal on the background of strong natural variability that acts as a random noise in this context. It is highly desirable not only to determine the averaged values themselves, but also to estimate the accuracy with which these values are known. To evaluate the accuracy of averaging is not a simple task mainly because the initial point values are not independent from each other, and interconnections between them substantially influence the averaging accuracy.
year simulations in order to separate noise in the system from the climate change signal. Several contributing papers focused on case studies using Regional Climate Models (RCMs) linked to hydrological models, applied to the analysis of runoff under conditions of convective activity and extreme precipitation, in regions of complex topography, or stakeholder-driven investigations such as water runoff simulations in Quebec undertaken for a major utility. Thorough analyses of GCM results for the Century were reported at the Workshop, in order to illustrate the improvements in model results which have taken place in recent years, and the increasing confidence with which the models can be used for projecting climatic change in coming decades. However, there is still much room for improvement; there is also a need to address more fully the manner in which climate and impacts models (e. g. , hydrological models) can be linked, in terms of consistency and the overlap between different scales, the underlying physical assumptions, and the parameterizations used. Session 2 was devoted to the two extremes of water resources, namely floods and droughts, the focus here being to identify the climate change component in river floods. These have significant economic implications, as was shown by several scientists from Western and Central Europe. Many long time series have been studied worldwide with the aim of detection of nonstationarities, yet there is no conclusive evidence of climate-related changes in flow records, in general.
This textbook provides a mathematical introduction to the theory of large-scale ocean circulation. It is accessible for readers with an elementary knowledge of mathematics and physics, including continuum mechanics and solution methods for ordinary differential equations. At the end of each chapter several exercises are formulated. Many of these are aimed to further develop methodological skills and to get familiar with the physical concepts. New material is introduced in only a few of these exercises. Fully worked out answers to all exercises can be downloaded from the book 's web site.
Inverse Modeling of the Ocean and Atmosphere is a graduate-level book for students of oceanography and meteorology, and anyone interested in combining computer models and observations of the hydrosphere or solid earth. A step-by-step development of maximally efficient inversion algorithms, using ideal models, is complemented by computer codes and comprehensive details for realistic models. Variational tools and statistical concepts are concisely introduced, and applications to contemporary research models, together with elaborate observing systems, are examined in detail. The book offers a review of the various alternative approaches, and further advanced research topics are discussed. Derived from the author's lecture notes, this book constitutes an ideal course companion for graduate students, as well as being a valuable reference source for researchers and managers in theoretical earth science, civil engineering and applied mathematics.
This book was first published in 2005. When an oceanic tidal wave that is primarily active on the water surface passes an ocean shelf or a region with a seamount, it is split into a less energetic surface wave and other internal modes with different wavelengths and propagation speeds. This cascading process, from the barotropic tides to the baroclinic components, leads to the transformation of tidal energy into turbulence and heat, an important process for the dynamics of the lower ocean. Baroclinic Tides demonstrates the analytical and numerical methods used to study the generation and evolution of baroclinic tides and, by comparison with experiments and observational data, shows how to distinguish and interpret internal waves. Strongly non-linear solitary internal waves, which are generated by internal tidal waves at the final stage of their evolution, are investigated in detail. This book is intended for researchers and graduate students of physical oceanography, geophysical fluid dynamics and hydroacoustics.
This book discusses the sources of uncertainty in future model projections of the tropical Pacific SST warming pattern under global warming. It mainly focuses on cloud radiation feedback and ocean dynamical effect, which reveal to be the two greatest sources of uncertainty in the tropical Pacific SST warming pattern. Moreover, the book presents a correction for model projections of the tropical Pacific SST warming pattern based on the concept of "observational constraints"; the corrected projection exhibits a more El Nino-like warming pattern.
The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years. The melting is accelerating, and researchers were unable to identify natural processes that might slow the deicing of the Arctic. Such substantial additional melting of Arctic and Antarctic glaciers and ice sheets would raise the sea level worldwide, flooding the coastal areas where many of the world's population lives. Studies, led by scientists at the National Center for Atmospheric Research (NCAR) and the University of Arizona, show that greenhouse gas increases over the next century could warm the Arctic by 3-5 C in summertime. Thus, Arctic summers by 2100 may be as warm as they were nearly 130,000 years ago, when sea levels eventually rose up to 6 m higher than today.
The new edition of this successful textbook has been completely updated, with extensive new material on thermohaline processes in the ocean and their link to both abrupt and longer-term climate change. It will be an appropriate course and reference book for students studying earth and environmental sciences, oceanography, meteorology and climatology. The book will also be useful for students and teachers of geography, physics, chemistry and biology. First Edition Hb (1996): 0-521-45212-0 First Edition Pb (1996): 0-521-58268-7
Proceedings of the International Meeting on UNEP's Regional Programmes in Mediterranean and Caribbean Seas, Genoa, Italy, 12-14 February 1992 which concentrated on three issues of particular interest: water quality, coastal zone management, sea-level rise and the risks and consequences of erosion and flooding.
Elements of Physical Oceanography is a derivative of the
Encyclopedia of Ocean Sciences, 2nd Edition and serves as an
important reference on current physical oceanography knowledge and
expertise in one convenient and accessible source. Its selection of
articles all written by experts in their field focuses on ocean
physics, air-sea transfers, waves, mixing, ice, and the processes
of transfer of properties such as heat, salinity, momentum and
dissolved gases, within and into the ocean. Elements of Physical
Oceanography serves as an ideal reference for topical
research.
On January 2, 1678, a fleet of French ships sank off the Venezuelan coast. This proved disastrous for French naval power in the region, and sparked the rise of a golden age of piracy. Tracing the lives of fabled pirates like the Chevalier de Grammont, Nikolaas Van Hoorn, Thomas Paine, and Jean Comte d'Estrées, The Lost Fleet portrays a dark age, when the outcasts of European society formed a democracy of buccaneers, settling on a string of islands off the African coast. From there, the pirates haunted the world's oceans, wreaking havoc on the settlements along the Spanish mainland and -- often enlisted by French and English governments -- sacking ships, ports, and coastal towns. More than three hundred years later, writer, explorer, and deep-sea diver Barry Clifford follows the pirates' destructive wake back to Venezuela. With the help of a lost map, drawn by the captain of the lost French fleet, Clifford locates the site of the disaster and wreckage of the once-mighty armada. |
You may like...
Cape Cod Bay - A History of Salt & Sea
Theresa Mitchell Barbo
Paperback
Ocean Currents - Physical Drivers in a…
Robert Marsh, Erik Van Sebille
Paperback
R3,064
Discovery Miles 30 640
World Seas: An Environmental Evaluation…
Charles Sheppard
Paperback
Ocean - Earth's Last Wilderness
David Attenborough, Colin Butfield
Paperback
|