Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Earth & environment > Earth sciences > The hydrosphere > Oceanography (seas)
Written by a group of international experts in their field, this book is a review of Lagrangian observation, analysis and assimilation methods in physical and biological oceanography. This multidisciplinary text presents new results on nonlinear analysis of Lagrangian dynamics, the prediction of particle trajectories, and Lagrangian stochastic models. It includes historical information, up-to-date developments, and speculation on future developments in Lagrangian-based observations, analysis, and modeling of physical and biological systems. Containing contributions from experimentalists, theoreticians, and modellers in the fields of physical oceanography, marine biology, mathematics, and meteorology, this book will be of great interest to researchers and graduate students looking for both practical applications and information on the theory of transport and dispersion in physical systems, biological modelling, and data assimilation.
The carbon dioxide absorption and gas exchange at the sea surface, marine aerosols and their photochemistry, the oceanic carbon cycle as well as biomarkers in marine ecosystems, and related topics are of primary importance for understanding our global ecosystem. The topics addressed in this volume are all stemming from areas which have developed only in the last ten years of research or which have gone into decidedly new directions in that time. In most cases, the recent research has been driven by advances in instrumentation or by large-scale international cooperations. Thus this volume is also aiming at interdisciplinary and international cooperations in the future.
Foraminifera and thecamoebians are highly sensitive to environmental stress (natural or anthropogenic). This feature means that they can be used to biologically characterize a variety of freshwater and coastal marine environments. Due to their small size and hard shells, large quantities are also found fossilised in core samples, making them ideal for reconstructing past environmental conditions. This volume covers the specific environmental applications of these organisms and contains an introduction to the subject, detailed descriptions of methods and techniques and case studies. Written for non-specialists, this book will appeal to resource managers and consultants in the public and private sector who routinely work on coastal environmental problems. The book will also serve as a supplementary text for graduate students in many courses on environmental monitoring, ecological baseline studies and environmental science.
The proceedings of the joint BMB 15 and ECSA 27 Symposium provides the reader with some of the advances in the study of biology, ecology, and physical and biochemical modelling of enclosed or semi-enclosed marine, brackish and estuarine systems (the Baltic Sea, the North Sea, the White Sea, the Black Sea, and the Ionian Sea). The book covers a wide range of topics in this field, including hydrography and modelling, eutrophication, environmental gradients, pelagic and benthic communities, introduced species and case studies of environmental impact. This volume of 28 papers summarizes current knowledge on the broad-scale topics of enclosed and semi-enclosed marine systems, and should be of interest to scientists, students and administrators within the field of marine ecology, environmental impact control and conservation.
This monograph creates a systematic interpretation of the
theoretical and the most actual experimental aspects of the
internal wave dynamics in the ocean. Firstly, it draws attention to
the important physical effects from an oceanographical point of
view which are presented in mathematical descriptions. Secondly,
the book serves as an introduction to the range of modern ideas and
the methods in the study of wave processes in dispersive
media.
In this book, the methodology of dynamical systems theory is applied to investigate the physics of the global ocean circulation. Topics include the dynamics of the Gulf Stream in the Atlantic Ocean, the stability of the thermohaline circulation and the El Nino/Southern Oscillation phenomenon in the Tropical Pacific. On the other hand, the book also deals with the numerical methods for applying bifurcation analysis on large dimensional dynamical systems, with thousands or more degrees of freedom, which arise through discretization of ocean models. The novel approach in understanding the phenomena of climate variability is through a systematic analysis within a hierarchy of models using these techniques. In this way, a nice overview is obtained of the relations between the results of the different models within the hierarchy. Mechanistic description of the physics of the results is provided and, where possible, links with results of state-of-the-art models and observations are sought. The reader is expected to have a background in basic incompressible fluid dynamics and applied mathematics, although the level of the text is mixed and sometimes quite introductory. Each chapter is rather self-contained and many details of derivations are provided. The book is aimed at graduate students and researchers in meteorology, oceanography, and related fields who are interested in tackling fundamental problems in dynamical oceanography and climate dynamics.
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This 2007 book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science.
During the 1980's a wealth of information was reported from field and laboratory experiments in order to validate andlor modify various aspects of the surface layer Monin-Obukhov (M-O) similarity theory for use over the sea, and to introduce and test new concepts related to high resolution flux magnitudes and variabilities. For example, data from various field experiments conducted on the North Sea, Lake Ontario, and the Atlantic experiments, among others, yielded information on the dependence of the flux coefficients on wave state. In all field projects, the usual criteria for satisfying M-O similarity were applied. The assumptions of stationarity and homogeneity was assumed to be relevant over both small and large scales. In addition, the properties of the outer layer were assumed to be "correlated" with properties of the surface layer. These assumptions generally required that data were averaged for spatial footprints representing scales greater than 25 km (or typically 30 minutes or longer for typical windspeeds). While more and more data became available over the years, and the technology applied was more reliable, robust, and durable, the flux coefficients and other turbulent parameters still exhibited significant unexplained scatter. Since the scatter did not show sufficient reduction over the years to meet customer needs, in spite of improved technology and heavy financial investments, one could only conclude that perhaps the use of similarity theory contained too many simplifications when applied to environments which were more complicated than previously thought.
This book is about marine seismic sources, their history, their physical principles and their deconvolution. It is particularly accented towards the physical aspects rather than the mathematical principles of signature generation in water as it is these aspects which the authors have found to be somewhat neglected. A huge amount of research has been carried out by both commercial and academic institutions over the years and the resulting literature is a little daunting, to say the least. In spite of this, the subject is intrinsically very simple and relies on a very few fundamental physical principles, a somewhat larger number of heuristic principles and a refreshingly small amount of blunderbuss mathematics. As such it is still one of those subjects in which the gifted practical engineer reigns supreme and from which many of the important advances have originated. In Chapter 1 of the book, the underlying physics and concepts are discussed, including pressure and wave propagation, bubble motion, virtual images and the factors determining choice of source. In marine reflection seismology, almost all of the seismic data acquired currently is done with either the airgun or the watergun, which rely on the expulsion of air and water respectively to generate acoustic energy. As a consequence, the discussion in this chapter is geared towards these two sources, as is much of the rest of the book.
The phenomenon of evaporation in the natural environment is of interest in various diverse disciplines. This book is an attempt to present a coherent and organized introduction to theoretical concepts and relationships useful in analyzing this phe nomenon, and to give an outline of their history and their application. The main objective is to provide a better understanding of evaporation, and to connect some of the approaches and paradigms, that have been developed in different disciplines concerned with this phenomenon. The book is intended for professional scientists and engineers, who are active in hydrology, meteorology, agronomy, oceanography, climatology and related environ mental fields, and who wish to study prevailing concepts on evaporation. At the same time, I hope that the book will be useful to workers in fluid dynamics, who want to become acquainted with applications to an important and interesting natural phenomenon. As suggested in its subtitle, the book consists of three major parts. The first, consisting of Chapters I and 2, gives a general ouline of the problem and a history of the theories of evaporation from ancient times through the end of the nineteenth century. This history is far from exhaustive, but it sket hes the background and the ideas that led directly to the scientific revolution in Europe and, ultimately, to our present-day knowledge."
This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanced methods to conservation in highly nonlinear systems, inverse methods and other important ideas for modern ocean modelling. Hopefully, this book will provide a foundation of knowledge to support the growth of this emergent field of science. The NATO Advanced Study Institute was supported by many organi zations. The seed money, of course, was received from the NATO Science Commi ttee. Many national organizations provided travel money for partiCipants. In France, CNES, IFREMER, and CNRS provided funds to support the French participants. In the U. S."
estimate tsunami potential by computing seismic moment. This system holds promise for a new generation of local tsunami warning systems. Shuto (Japan) described his conversion of !ida's definition of tsunami magnitude to local tsunami efforts. For example, i l = 2 would equal 4 m local wave height, which would destroy wooden houses and damage most fishing boats. SimOes (Portugal) reported on a seamount-based seismic system that was located in the tsunami source area for Portugal. In summary, the risk of tsunami hazard appears to be more widespread than the Pacific Ocean Basin. It appears that underwater slumps are an important component in tsunami generation. Finally, new technologies are emerging that would be used in a new generation of tsunami warning systems. These are exciting times for tsunami researchers. OBSERVATIONS TSUNAMI DISPERSION OBSERVED IN THE DEEP OCEAN F. I. GONZALEZl and Ye. A. KULIKOV2 Ipacific Marine Environmental Laboratory, NOAA 7600 Sand Point Way, N. E. , Seattle, W A 98115 USA 2State Oceanographic Institute Kropotkinskey per. 6 Moscow 119034, Russia CIS The amplitude and frequency modulation observed in bottom pressure records of the 6 March 1988 Alaskan Bight tsunami are shown to be due to dispersion as predicted by linear wave theory. The simple wave model developed for comparison with the data is also consistent with an important qualitative feature of the sea floor displacement pattern which is predicted by a seismic fault plane deformation model, i. e. the existence of a western-subsidence/eastern-uplift dipole.
Underwater acoustic digital signal processing and communications is an area of applied research that has witnessed major advances over the past decade. Rapid developments in this area were made possible by the use of powerful digital signal processors (DSPs) whose speed, computational power and portability allowed efficient implementation of complex signal processing algorithms and experimental demonstration of their performance in a variety of underwater environments. The early results served as a motivation for the development of new and improved signal processing methods for underwater applications, which today range from classical of autonomous underwater vehicles and sonar signal processing, to remote control underwater wireless communications. This book presents the diverse areas of underwater acoustic signal processing and communication systems through a collection of contributions from prominent researchers in these areas. Their results, both new and those published over the past few years, have been assembled to provide what we hope is a comprehensive overview of the recent developments in the field. The book is intended for a general audience of researchers, engineers and students working in the areas of underwater acoustic signal processing. It requires the reader to have a basic understanding of the digital signal processing concepts. Each topic is treated from a theoretical perspective, followed by practical implementation details. We hope that the book can serve both as a study text and an academic reference.
A wide variety of problems are associated with the flow of shallow water, such as atmospheric flows, tides, storm surges, river and coastal flows, lake flows, tsunamis. Numerical simulation is an effective tool in solving them and a great variety of numerical methods are available. The first part of the book summarizes the basic physics of shallow-water flow needed to use numerical methods under various conditions. The second part gives an overview of possible numerical methods, together with their stability and accuracy properties as well as with an assessment of their performance under various conditions. This enables the reader to select a method for particular applications. Correct treatment of boundary conditions (often neglected) is emphasized. The major part of the book is about two-dimensional shallow-water equations but a discussion of the 3-D form is included. The book is intended for researchers and users of shallow-water models in oceanographic and meteorological institutes, hydraulic engineering and consulting. It also provides a major source of information for applied and numerical mathematicians.
Since the computing revolution, modelling has become the most important way in which we further our knowledge about how the sea moves and how the processes in the sea operate. The coast and the continental shelf are two of the most important areas of the sea to understand. Coastal and Shelf Sea Modelling is therefore very timely and important. In this text, modelling the processes that occur in the sea is motivated continually through real life examples. Sometimes these are incorporated naturally within the text, but there are also a number of case studies taken from the recent research literature. These will be particularly valuable to students as they are presented in a style more readily accessible than that found in a typical research journal. The motivation for modelling is care for the environment. The well publicised problem of global warming, the phenomenon of El Nino, more localised pollution scares caused by tanker accidents and even smaller scale coastal erosion caused by storms all provide motivation for modelling and all get coverage in this text. Particularly novel features of the book include a systematic treatment of the modelling process in a marine context, the inclusion of diffusion in some detail, ecosystems modelling and a brief foray into wave prediction. The final chapter provides the reader with the opportunity to do some modelling; there are many worked examples followed by exercises that readers can try themselves. All answers are provided. Throughout, the style is informal and the technicalities in term of mathematics are kept to a minimum. Coastal and Shelf Sea Modelling is particularly suitable for graduate marine and oceanographic modelling courses, but will also prove useful to coastal engineers and students at any level interested in the quantitative modelling of marine processes. It is stressed that only a minimal level of mathematics (first year calculus or less) is required; the style and content is introductory.
This book presents an up-to-date analysis of ocean-atmosphere interaction. Well known experts examine diverse subjects such as ocean surface waves, air-sea exchange processes, ocean surface mixed layer, water-mass formation, as well as general circulation of the oceans, El Nino and Southern Oscillation (ENSO), and the deep-ocean circulation. Other areas described are basic dynamics, data analysis techniques, numerical modelling, and remote sensing. This book is primarily aimed at graduate and senior undergraduate courses in the area of ocean-atmosphere research.
Inverse problems have a long history in acoustics, optics, electromagnetics and geophysics, but only recently have the signals provided by ocean acoustic sensors become numerous and sophisticated enough to allow for realistic identification of the ocean parameters. Acoustic signals propagating for long distances in the water column and reflections of underwater sound from the ocean boundaries provide novel problems of interpretation and inversion. The chapters in this volume discuss some of the contemporary aspects of these problems. They provide recent and useful results for bottom recognition, inverse scattering in acoustic wave guides, and ocean acoustic tomography, as well as a discussion of some of the new algorithms, such as those related to matched-field processing, that have recently been used for inverting experimental data. Each chapter is by a noted expert in the field and represents the state of the art. The chapters have all been edited to provide a uniform format and level of presentation.
Annals of natural disasters have always caused common interest. Scientists and specialists of various domains, teachers, students, post-graduates, journalists .. and merely inquisitive can find useful and didactic information in such annals~ Sad experience of the natural disasters endured gives very important material for humanity. It allows us not only to understand better the phenomenon itself, but also to prepare ourselves for future cataclysms, which our "Mother-Nature" is so rich in. The book by Sergey Soloviev and a group of his collaborators represents a detailed description of tsunami waves and accompanying phenomena in the Mediterranean Sea over a period of approximately four thousand years. Sergey Soloviev, the founder and recognised leader of the Russian scientific school of tsunami researchers, was unable to see the publication of this book, passing away on March 9, 1994. However, his ample experience in investigation and systematisation of tsunami waves for the Pacific area [Soloviev and Go, 1974, 1975; Soloviev, Go and Kim, 1986] has been widely used in compiling this book. The Mediterranean coasts are the cradle of civilisation. Written accounts of past disasters in this region of the Earth are rather numerous and highly reliable. Therefore the results of the tsunami study in the Mediterranean Sea are of specific value both for the scientific community and for humanity at large.
An up-to-date summary of our understanding of the dynamics and thermodynamics of moist atmospheric convection, with a strong focus on recent developments in the field. The book also reviews ways in which moist convection may be parameterised in large-scale numerical models - a field in which there is still some controversy - and discusses the implications of convection for large-scale flow. Audience: The book is aimed at the graduate level and research meteorologists as well as scientists in other disciplines who need to know more about moist convection and its representation in numerical models.
nd This book collects the scientific contributions from the lecturers at the 2 edition of the "International School on Marine Chemistry" held in Ustica (Palermo, Italy) from 5 to 12 September 1998. The School was planned with the aim of giving an overview about the chemical processes occurring in the marine environment and the more recent ana- lytical methodologies for their study. The School was organised under the auspices of the Italian Chemical Society and with the financial support of the Marine Reserve of Ustica Island, the Committee for Environment of Italian CNR, the University of Palermo, the Provincia Regionale of Palermo and the Shimadzu-Italia Corporation. The book has been printed with the fi- nancial support of the "Assessorato Ambiente" of the Provincia Regionale of Palermo. All the participants, about a hundred including the lecturers and the Organising Committee, are grateful for the generous support of the agencies. A particular ac- knowledgement from the Editors is to all the lecturers for their availability and cour- tesy and for the high quality of their scientific contributions.
Over the past decade the scientific activities of the Joint Global Ocean Flux Study (JGOFS), which focuses on the role of the oceans in controlling climate change via the transport and storage of greenhouse gases and organic matter, have led to an increased interest in the study of the biogeochemistry of organic matter. There is also a growing interest in global climate fluctuations. This, and the need for a precise assessment of the dynamics of carbon and other bio-elements, has led to a demand for an improved understanding of biogeochemical processes and the chemical characteristics of both particulate and dissolved organic matter in the ocean. A large amount of proxy data has been published describing the changes of the oceanic environment, but qualitative and quantitative estimates of the vertical flux of (proxy) organic compounds have not been well documented. There is thus an urgent need to pursue this line of study and, to this end, this book starts with several papers dealing with the primary production of organic matter in the upper ocean. Thereafter, the book goes on to follow the flux and characterization of particulate organic matter, discussed in relation to the primary production in the euphotic zone and resuspension in the deep waters, including the vertical flux of proxy organic compounds. It goes on to explain the decomposition and transformation of organic matter in the ocean environment due to photochemical and biological agents, and the reactivity of bulk and specific organic compounds, including the air-sea interaction of biogenic gases. The 22 papers in the book reflect the interests of JGOFS and will thus serve as a valuable reference source for future biogeochemical investigations of both bio-elements and organic matter in seawater, clarifying the role of the ocean in global climate change.
Uncertainty for Everyone The one thing that is certain about the world is that the world is uncertain. I have here, the question that apart of the matter, living matter, has to resolve in each and every one of its moments of existance. The environment of a living being is apart of the living being where it turns out, the rest of the living beings live. This is the drama of life on earth. Every living individual debates with his environment, exchanging matter, energy and information in the hope of staying alive, the same as all living beings who share that same environment. The adven ture of a living being (of all living beings ) is to maintain reasonable independ ence in face ofthe fluctuations ofuncertainty within the environment. The range of restrictions and mutual relationships is colossal. How is the tran seendental pretension of staying alive regulated? There is an equation imposed by the laws ofthermodynamics and the mathematical theory ofinformation about the interaction ofa living being with his environment which we could state like this: The complexity 01 a living individual plus his capacity for anticipation in re spect to his environment is identical to the uncertainty of the environmentplus the capacity of that living being to change the environment."
This completely revised and enlarged second edition provides an up-to-date overview of all major topics in sedimentary geology. It is unique in its quantitative approach to denudation-accumulation systems and basin fillings, including dynamic aspects. The relationship between tectonism and basin evolution as well as the concepts of sequence cycle and event stratigraphy in various depositional environments are extensively discussed. Numerous, often composite figures, a well-structured text, brief summaries in boxes, and several examples from all continents make the book an invaluable source of information for students, researchers and professors in academia as well as for professionals in the oil industry.
Turbulence theory is one of the most intriguing parts of fluid mechanics and many outstanding scientists have tried to apply their knowledge to the development of the theory and to offer useful recommendations for solution of some practical problems. In this monograph the author attempts to integrate many specific approaches into the unified theory. The basic premise is the simple idea that a small eddy, that is an element of turbulent meso-structure, possesses its own dynamics as an object rotating with its own spin velocity and obeying the Newton dynamics of a finite body. A number of such eddies fills a coordinate cell, and the angular momentum balance has to be formulated for this spatial cell. If the cell coincides with a finite difference element at a numerical calculation and if the external length scale is large, this elementary volume can be considered as a differential one and a continuum parameterization has to be used. Nontrivial angular balance is a consequence of the asymmetrical Reynolds stress action at the oriented sides of an elementary volume. At first glance, the averaged dyad of velocity components is symmetrical, == However, if averaging is performed over the plane with normal nj, the principle of commutation is lost. As a result, the stress tensor asymmetry j is determined by other factors that participate in the angular momentum balance. This is the only possibility to determine a stress in engineering." |
You may like...
Changing Asia-Pacific Marginal Seas
Chen-Tung Arthur Chen, Xinyu Guo
Hardcover
R3,548
Discovery Miles 35 480
Homewaters - A Human and Natural History…
David B. Williams
Paperback
|