![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
Interest in the Turin Shroud continues to the present day even
though it was finally carbon dated in 1988 and shown not to be of
an age consistent with Christ's burial. Scientifically, the age of
the shroud cloth is of little consequence, but to the general
public, it is of considerable significance.
During the past decade, modern high-performance liquid chromatography (HPLC) utilization has expanded greatly, especially in the quality control of pharmaceutical products in drug quality control laboratories. This book provides an extensive collection of technical information about HPLC-Columns (physicochemical properties and chromatographic characteristics), from various manufacturers, and helps analysts to decide on the ideal approach for their analysis according to the requirements of drug manufacturers specifi cations and the desired Pharmacopeia. In addition, the authors give practical advice on how to prepare mobile phases, choose a suitable detector, and set up an HPLC analysis. This book is comprehensive for the average professional or technician who plans to work with modern HPLC. This book is useful for most Drug Quality Control Laboratories where modern HPLC is utilized. Following a hands-on approach, the book gives key insights into the pharmaceutical applications of HPLC and the latest requirements of the major regulatory agencies such as ICH, FDA, or USP.
High-Resolution NMR Techniques in Organic Chemistry, Third Edition describes the most important NMR spectroscopy techniques for the structure elucidation of organic molecules and the investigation of their behaviour in solution. Appropriate for advanced undergraduate and graduate students, research chemists and NMR facility managers, this thorough revision covers practical aspects of NMR techniques and instrumentation, data collection, and spectrum interpretation. It describes all major classes of one- and two-dimensional NMR experiments including homonuclear and heteronuclear correlations, the nuclear Overhauser effect, diffusion measurements, and techniques for studying protein-ligand interactions. A trusted authority on this critical expertise, High-Resolution NMR Techniques in Organic Chemistry, Third Edition is an essential resource for every chemist and NMR spectroscopist.
This book demonstrates the potential of novel in-situ experiments, performed on microscopic and macroscopic length scales, for investigating localized deformation processes in metallic materials, particularly their kinetics and the associated evolution of local strain fields. It features a broad methodological portfolio, spanning optical and electron microscopy, digital image correlation, infrared theromgraphy and acoustic emission testing, and particularly focuses on identifying the localized microscopic deformation processes in high-strength/high-ductility CrMnNi TRIP/TWIP (TRansformation Induced Plasticity/TWinning Induced Plasticity) steels. Presenting state-of-the art methodology applied to topical and pertinent problems in materials engineering, this book is a valuable resource for researchers and graduate students working in the field of plasticity and deformation of structural materials.
This book highlights emerging trends in terahertz engineering and system technologies, mainly, devices, advanced materials, and various applications in THz technology. It includes advanced topics such as terahertz biomedical imaging, pattern recognition and tomographic reconstruction for THz biomedical imaging by use of machine learning and artificial intelligence, THz imaging radars for autonomous vehicle applications, THZ imaging system for security and surveillance. It also discusses theoretical, experimental, established and validated empirical work on these topics and the intended audience is both academic and professional.
High-temperature liquid chromatography has attracted much interest in recent years but has not yet recognized its full potential in the chromatographic community. There is a widespread reluctance in industry to use temperature to speed up the separation process, influence the selectivity of a separation or implement novel detection techniques. However, the technology has now matured and could revolutionize chromatography as we see it today. Better equipment, such as heating systems able to generate faster heating rates, is becoming more readily available. Also, columns based on silica gel, which can withstand higher temperatures for an extended period, are now being introduced. Nevertheless, further technological and methodical efforts are needed to establish the method in a regulated environment like the pharmaceutical industry. This is the only text to cover all the practical aspects, as well as the underlying theoretical principles, of setting up an HPLC system for high temperature operation. It is not intended solely for academics but will also benefit the researcher interested in more practical considerations. The author is a recognized expert and has conducted several studies with partners from industry to validate the method. Many real examples from these studies have been included in the book. The aim is to support practitioners in the creation of their own protocols without the need to rely solely on trial and error. The book starts with a brief definition of high temperature liquid chromatography before going on to cover: system set up; the heating system; mobile phase considerations; suitable stationary phases; method development using temperature programming; analyte stability, and special hyphenation techniques using superheated water as a mobile phase. In each chapter, experimental data is used to illustrate the main statements and the advantages over conventional HPLC are evaluated. The book concludes with a critical outlook on further developments and applications underlining the necessary advances needed to make high temperature HPLC more robust.
Prompt gamma activation analysis (PGAA) is a unique, non-destructive nuclear analytical method with multi-element capabilities. It is most effective if intense neutron beams (especially cold beams) of nuclear reactors are used to induce the prompt gamma radiation. Based largely on the authors' pioneering research in cold neutron PGAA, the handbook describes the methodology in self-contained manner and reviews recent applications. The library of prompt gamma ray data and spectra for all natural elements, also provided on a CD-ROM supplement, is a unique aid to the practitioner. The level is understandable by a broad audience, which facilitates teaching and training. The Handbook of Prompt Gamma Activation Analysis is a comprehensive handbook written for those practising the method, wanting to implement it at a reactor facility, or just looking for a powerful non-destructive method of element analysis. The book is also useful for nuclear physics, chemistry and engineering scientists, scholars and graduate students interested in neutron-induced gamma ray spectroscopy and nuclear analytical methods.
This book presents a selection of advanced lectures from leading researchers, providing recent theoretical results on strongly coupled quantum field theories. It also analyzes their use for describing new quantum states, which are physically realizable in condensed matter, cold-atomic systems, as well as artificial materials. It particularly focuses on the engineering of these states in quantum devices and novel materials useful for quantum information processing. The book offers graduate students and young researchers in the field of modern condensed matter theory an updated review of the most relevant theoretical methods used in strongly coupled field theory and string theory. It also provides the tools for understanding their relevance in describing the emergence of new quantum states in a variety of physical settings. Specifically, this proceedings book summarizes new and previously unrelated developments in modern condensed matter physics, in particular: the interface of condensed matter theory and quantum information theory; the interface of condensed matter physics and the mathematics emerging from the classification of the topological phases of matter, such as topological insulators and topological superconductors; and the simulation of condensed matter systems with cold atoms in optical lattices.
The quality and safety of food are crucial for human nutrition. However, evaluating the chemical composition of food is challenging for the analyst and requires powerful methods. Chromatography and mass spectrometry (MS) is the gold standard for analyzing complex food samples, including raw materials and intermediate and finished products. Mass Spectrometry in Food Analysis covers the MS-based analysis of different aspects of food quality, which include nutritional value, profile of macronutrients (proteins, lipids, and carbohydrates), micronutrients (vitamins), and nutraceutical active compounds. Additionally, sensory quality, flavor, food pigments, safety, and detection of pesticides, contact materials, veterinary drugs and pharmaceuticals, organic pollutants, and pathogens are covered. Key Features: Contains the basics of mass spectrometry and experimental strategies Explores determination of macro- and micronutrients Analyzes sensory and nutraceutical food quality Discusses detection of contaminants and proof of authenticity Presents emerging methods for food analysis This book contains an introductory section that explains the basics of MS and the difference between targeted and untargeted strategies for beginners. Further, it points out new analytical challenges, such as monitoring contaminants of emerging concern, and presents innovative techniques (e.g., ambient ionization MS and data mining). Also available in the Food Analysis & Properties Series: Nanoemulsions in Food Technology: Development, Characterization, and Applications, edited by Javed Ahmad and Leo M.L. Nollet (ISBN: 978-0-367-61492-8) Sequencing Technologies in Microbial Food Safety and Quality, edited by Devarajan Thangadurai, Leo M.L. Nollet, Saher Islam, and Jeyabalan Sangeetha (ISBN: 978-0-367-35118-2) Chiral Organic Pollutants: Monitoring and Characterization in Food and the Environment, edited by Edmond Sanganyado, Basil K. Munjanja, and Leo M.L. Nollet (ISBN: 978-0-367-42923-2) For a complete list of books in this series, please visit our website at: www.crcpress.com/Food-Analysis--Properties/book-series/CRCFOODANPRO
This book presents the latest advances and future trends in electron and phonon spectrometrics, focusing on combined techniques using electron emissions, electron diffraction, and phonon absorption and reflection spectrometrics from a substance under various perturbations to obtain new information on bond-electron-phonon dynamics. Discussing the principles of the bond order-length-strength (BOLS) correlation, nonbonding electron polarization (NEP), local bond average (LBA), and multi-field lattice oscillation dynamics for systems under perturbation, the book covers topics like differential photoelectron/phonon spectrometrics (DPS), which distils transition of the length, energy, stiffness and the fraction of bonds upon chemical or physical conditioning; and the derived performance of electrons in various bands in terms of quantum entrapment and polarization. This book appeals to researchers, scientists and engineers in the fields of chemistry, physics, surface and interface science, and materials science and engineering who are interested in electron and phonon spectrometrics.
This book provides an understandable review of SU(3) representations, SU(3) Wigner-Racah algebra and the SU(3) SO(3) integrity basis operators, which are often considered to be difficult and are avoided by most nuclear physicists. Explaining group algebras that apply to specific physical systems and discussing their physical applications, the book is a useful resource for researchers in nuclear physics. At the same time it helps experimentalists to interpret data on rotational nuclei by using SU(3) symmetry that appears in a variety of nuclear models, such as the shell model, pseudo-SU(3) model, proxy-SU(3) model, symplectic Sp(6, R) model, various interacting boson models, various interacting boson-fermion models, and cluster models. In addition to presenting the results from all these models, the book also describes a variety of statistical results that follow from the SU(3) symmetry.
The book reviews photosynthetic water oxidation and proton-coupled electron transfer in photosystem, focusing on the molecular vibrations of amino acid residues and water molecules. Photosynthetic water oxidation performed by plants and cyanobacteria is essential for the sustenance of life on Earth, not only as an electron source for synthesizing sugars from CO2, but also as an O2 source in the atmosphere. Water oxidation takes place at the Mn4CaO5 cluster in photosystem II, where a series of electron transfer reactions coupled with proton transfer occur using light energy. The author addresses the unresolved mechanisms of photosynthetic water oxidation and relevant proton-coupled electron transfer reactions using a combined approach of experimental and computational methods such as Fourier transform infrared difference spectroscopy and quantum chemical calculations. The results show that protonation and hydrogen-bond structures of water molecules and amino acid residues in the protein play important roles in regulation of the electron and proton transfer reactions. These findings and the methodology make a significant contribution to our understanding the molecular mechanism of photosynthetic water oxidation.
This book offers a compact overview on crystallography, symmetry, and applications of symmetry concepts. The author explains the theory behind scattering and diffraction of electromagnetic radiation. X-ray diffraction on single crystals as well as quantitative evaluation of powder patterns are discussed.
Advanced Mass Spectrometry for Food Safety and Quality provides information on recent advancements made in mass spectrometry-based techniques and their applications in food safety and quality, also covering the major challenges associated with implementing these technologies for more effective identification of unknown compounds, food profiling, or candidate biomarker discovery. Recent advances in mass spectrometry technologies have uncovered tremendous opportunities for a range of food-related applications. However, the distinctive characteristics of food, such as the wide range of the different components and their extreme complexity present enormous challenges. This text brings together the most recent data on the topic, providing an important resource towards greater food safety and quality.
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
This book focuses on angle-resolved photoemission spectroscopy studies on novel interfacial phenomena in three typical two-dimensional material heterostructures: graphene/h-BN, twisted bilayer graphene, and topological insulator/high-temperature superconductors. Since the discovery of graphene, two-dimensional materials have proven to be quite a large "family". As an alternative to searching for other family members with distinct properties, the combination of two-dimensional (2D) materials to construct heterostructures offers a new platform for achieving new quantum phenomena, exploring new physics, and designing new quantum devices. By stacking different 2D materials together and utilizing interfacial periodical potential and order-parameter coupling, the resulting heterostructure's electronic properties can be tuned to achieve novel properties distinct from those of its constituent materials. This book offers a valuable reference guide for all researchers and students working in the area of condensed matter physics and materials science.
Since its development toward the end of the past millennium, high-resolution Inelastic X-Ray Scattering (IXS) has substantially improved our knowledge of the collective dynamics of liquids at mesoscopic scales, that is, over distances and time-lapses approaching those typical of first neighboring atoms' interactions. However, despite the undoubted scientific relevance and the rapid evolution toward maturity, comprehensive monographs on this technique are not available. The primary purpose of this book is to partially fill this lack while providing a helpful reference for both mature scientists and less experienced researchers in the field.After a general introduction to the fundamental aspects of scattering measurements, the IXS cross-section is analytically derived, and the complementarity with Inelastic Neutron Scattering is discussed in detail.The remainder of the book reviews representative IXS studies on simple fluids focusing on topics as relevant as the dynamic crossover from the hydrodynamic to the kinetic regime, the onset of relaxation phenomena and related high-frequency viscoelasticity, the gradual emergence of quantum effects, the evidence of dynamic boundaries partitioning the supercritical domain, the prevalence of solid-like aspects in the high-frequency dynamics of fluids, and the dynamic fingerprints of the polymorphic nature of liquid aggregates.
This book presents new approaches that offer a better characterization of the interrelationship between crystalline and amorphous phases. In recent years, the use of dielectric spectroscopy has significantly improved our understanding of crystallization. The combination of modern scattering methods, using either synchrotron light or neutrons and infrared spectroscopy with dielectrics, is now helping to reveal modifications of both crystalline and amorphous phases. In turn, this yields insights into the underlying physics of the crystallization process in various materials, e.g. polymers, liquid crystals and diverse liquids. The book offers an excellent introduction to a valuable application of dielectric spectroscopy, and a helpful guide for every scientist who wants to study crystallization processes by means of dielectric spectroscopy.
This book, a consecutive contribution to the series Challenges and Advances in Computational Chemistry and Physics, focuses on understanding the photoinduced processes in biological systems. Understanding and fine control of light fate in molecules is vital for the progress of society and environmental safety. Light induced changes of various physico-chemical and spectroscopic properties in nucleic acids and proteins is the basis of fundamental biological events such as vision, DNA photodamage or photosensing. The investigation of these processes is challenging to both theoretical and experimental studies. This volume encompasses the quantum mechanics/molecular mechanics theory in several subfields, including: advanced computational methods for nucleic acids and proteins systems; dynamics, spectroscopic and physico-chemical properties of biological photoreceptors; DNA photodamage. This book is of interest to readers in both fundamental and application-oriented research by overviewing recent achievements in computational modeling of excited states in nucleic acids and proteins.
The complexity and heterogeneity of biological systems has posed an immense challenge in recent years. An increasingly important tool for obtaining molecular and atomic scale information on a range of large biological molecules and cellular components is solid-state NMR. This technique can address fascinating problems in structural biology, including the arrangement of supramolecular complexes and fibril formation in relation to molecular folding, misfolding and aggregation. Advances in Biological Solid-State NMR brings the reader up to date with chapters from international leaders of this growing field, covering the most recent developments in the methodology and applications of solid-state NMR to studies of membrane interactions and molecular motions. A much needed discussion of membrane systems is detailed alongside important developments in in situ analysis. Topics include applications to biological membranes, membrane active peptides, membrane proteins, protein assemblies and in-cell NMR. This exposition of an invaluable technique will interest those working in a range of related spectroscopic and biological fields. A basic introduction invites those interested to familiarise themselves with the basic mathematical and conceptual foundations of solid-state NMR. A thorough and comprehensive discussion of this promising technique follows, which is essential reading for those working or studying at postgraduate level in this exciting field.
This book presents and discusses recent developments in the broad field of spectroscopy, providing the reader with an updated overview. The main objective is to introduce them to recent innovations and current trends in spectroscopy applied to molecules and materials. The book also brings together experimentalists and theoreticians to highlight the multidimensional aspects of spectroscopy and discuss the latest issues. Accordingly, it provides insights not only into the general goals of spectroscopy, but also into how the various spectroscopic techniques represent a toolbox that can be used to gain a more detailed understanding of molecular systems and complex chemical problems. Besides technical aspects, basic theoretical interpretations of spectroscopic results are also presented. The spectroscopy techniques discussed include UV-visible absorption spectroscopy, Raman spectroscopy, IR absorption spectroscopy, fluorescence spectroscopy, and time-resolved spectroscopy. In turn, basic tools like lasers and theoretical modeling approaches are also presented. Lastly, applications for the characterization of fundamental properties of molecules (environmental aspects, biomolecules, pharmaceutical drugs, hazardous molecules, etc.) and materials (nanomaterials, nuclear chemistry materials, biomaterials, etc.) are discussed. Given its scope, the book offers a valuable resource for researchers from various branches of science, and presents new techniques that can be applied to their specific problems.
This volume provides a wide range of imaging protocols that can be tailored to specific organisms or cell-types. Chapters guide readers through fixed-cell, live-cell, phenotype screening, super-resolution, intravital imaging techniques, and fluorescence life-time imaging microscopy (FLIM). Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Confocal Microscopy: Methods and Protocols aims to ensure successful results in the further study of this vital field.
This book is devoted to advanced materials and perspective sensors, which is one of the most important problems in nanotechnology and security. This book is useful for researchers, scientist and graduate students in the fields of solid state physics, nanotechnology and security.
The content of this book describes in detail the results of the present measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, beside other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. The incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons (*) X-ray-ion coincidence spectroscopy of the electron xenon atom collisions is also described. The present measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases by electron impact are also described in the text of this book. The results of the measurements for sulfur dioxide molecule show how this major atmospheric pollutant can be removed from the atmosphere by electron impact dissociation of this molecule. The present results of the measurements for sulfur hexa fluoride give an insight into the dissociation properties of this molecular gas, which is being so widely used as a gaseous insulator in the electrical circuits. The book also describes the present measurements of the polarization parameters of the fluorescence radiation emitted by the electron-impact-excited atoms of sodium and potassium. In these investigations the target atoms are polarized, therefore, the measurements of the polarization parameters give information about the electron atom interaction in terms of the interference, direct and exchange interaction channels.
This volume provides a collection of state-of-the-art approaches addressing key aspects of multiplexed imaging. Chapters focus on labeling and imaging techniques for multiplexed imaging, as well as on the application of these techniques for the study of cells and tissues. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Multiplexed Imaging: Methods and Protocols aims to be helpful for researchers interested in implementing multiplexed imaging or in developing novel, cutting-edge multiplexed imaging approaches. |
![]() ![]() You may like...
The Role of Islamic Spirituality in the…
Mahazan Abdul Mutalib, Ahmad Rafiki
Hardcover
R5,784
Discovery Miles 57 840
Introduction To Business Management…
L. Alsemgeest, K. Booysen, …
Paperback
R791
Discovery Miles 7 910
Ratels Aan Die Lomba - Die Storie Van…
Leopold Scholtz
Paperback
![]()
The Molecular Basis of Drug Addiction…
Shafiqurrahman
Hardcover
|