![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This book presents the latest advances and future trends in electron and phonon spectrometrics, focusing on combined techniques using electron emissions, electron diffraction, and phonon absorption and reflection spectrometrics from a substance under various perturbations to obtain new information on bond-electron-phonon dynamics. Discussing the principles of the bond order-length-strength (BOLS) correlation, nonbonding electron polarization (NEP), local bond average (LBA), and multi-field lattice oscillation dynamics for systems under perturbation, the book covers topics like differential photoelectron/phonon spectrometrics (DPS), which distils transition of the length, energy, stiffness and the fraction of bonds upon chemical or physical conditioning; and the derived performance of electrons in various bands in terms of quantum entrapment and polarization. This book appeals to researchers, scientists and engineers in the fields of chemistry, physics, surface and interface science, and materials science and engineering who are interested in electron and phonon spectrometrics.
Since its development toward the end of the past millennium, high-resolution Inelastic X-Ray Scattering (IXS) has substantially improved our knowledge of the collective dynamics of liquids at mesoscopic scales, that is, over distances and time-lapses approaching those typical of first neighboring atoms' interactions. However, despite the undoubted scientific relevance and the rapid evolution toward maturity, comprehensive monographs on this technique are not available. The primary purpose of this book is to partially fill this lack while providing a helpful reference for both mature scientists and less experienced researchers in the field.After a general introduction to the fundamental aspects of scattering measurements, the IXS cross-section is analytically derived, and the complementarity with Inelastic Neutron Scattering is discussed in detail.The remainder of the book reviews representative IXS studies on simple fluids focusing on topics as relevant as the dynamic crossover from the hydrodynamic to the kinetic regime, the onset of relaxation phenomena and related high-frequency viscoelasticity, the gradual emergence of quantum effects, the evidence of dynamic boundaries partitioning the supercritical domain, the prevalence of solid-like aspects in the high-frequency dynamics of fluids, and the dynamic fingerprints of the polymorphic nature of liquid aggregates.
This book provides a comprehensive summary of research to date in the field of stable iron isotope geochemistry. Since research began in this field 20 years ago, the field has grown to become one of the major research fields in "non-traditional" stable isotope geochemistry. This book reviews all aspects of the field, from low-temperature to high-temperature processes, biological processes, and cosmochemical processes. It provides a detailed history and state-of-the art summary about analytical methods to determine Fe-isotope ratios and discusses analytical and sample prospects.
This book presents a selection of advanced lectures from leading researchers, providing recent theoretical results on strongly coupled quantum field theories. It also analyzes their use for describing new quantum states, which are physically realizable in condensed matter, cold-atomic systems, as well as artificial materials. It particularly focuses on the engineering of these states in quantum devices and novel materials useful for quantum information processing. The book offers graduate students and young researchers in the field of modern condensed matter theory an updated review of the most relevant theoretical methods used in strongly coupled field theory and string theory. It also provides the tools for understanding their relevance in describing the emergence of new quantum states in a variety of physical settings. Specifically, this proceedings book summarizes new and previously unrelated developments in modern condensed matter physics, in particular: the interface of condensed matter theory and quantum information theory; the interface of condensed matter physics and the mathematics emerging from the classification of the topological phases of matter, such as topological insulators and topological superconductors; and the simulation of condensed matter systems with cold atoms in optical lattices.
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
This thesis reports on essential experimental work in the field of novel two-dimensional (2D) atomic crystals beyond graphene. It especially describes three new 2D crystal materials, namely germanene, hafnene, and monolayer PtSe2 fabricated experimentally for the first time, using an ultra-high vacuum molecular beam epitaxy (UHV-MBE) system. Multiple characterization techniques, including scanning tunneling microscope (STM), low energy electron diffraction (LEED), scanning transmission electron microscope (STEM), and angle-resolved photoemission spectroscopy (ARPES), combined with theoretical studies reveal the materials' atomic and electronic structures, which allows the author to further investigate their physical properties and potential applications. In addition, a new epitaxial growth method for transition metal dichalcogenides involving direct selenization of metal supports is developed. These studies represent a significant step forward in expanding the family of 2D crystal materials and exploring their application potentials in future nanotechnology and related areas.
The book reviews photosynthetic water oxidation and proton-coupled electron transfer in photosystem, focusing on the molecular vibrations of amino acid residues and water molecules. Photosynthetic water oxidation performed by plants and cyanobacteria is essential for the sustenance of life on Earth, not only as an electron source for synthesizing sugars from CO2, but also as an O2 source in the atmosphere. Water oxidation takes place at the Mn4CaO5 cluster in photosystem II, where a series of electron transfer reactions coupled with proton transfer occur using light energy. The author addresses the unresolved mechanisms of photosynthetic water oxidation and relevant proton-coupled electron transfer reactions using a combined approach of experimental and computational methods such as Fourier transform infrared difference spectroscopy and quantum chemical calculations. The results show that protonation and hydrogen-bond structures of water molecules and amino acid residues in the protein play important roles in regulation of the electron and proton transfer reactions. These findings and the methodology make a significant contribution to our understanding the molecular mechanism of photosynthetic water oxidation.
This volume provides a collection of state-of-the-art approaches addressing key aspects of multiplexed imaging. Chapters focus on labeling and imaging techniques for multiplexed imaging, as well as on the application of these techniques for the study of cells and tissues. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Multiplexed Imaging: Methods and Protocols aims to be helpful for researchers interested in implementing multiplexed imaging or in developing novel, cutting-edge multiplexed imaging approaches.
The complexity and heterogeneity of biological systems has posed an immense challenge in recent years. An increasingly important tool for obtaining molecular and atomic scale information on a range of large biological molecules and cellular components is solid-state NMR. This technique can address fascinating problems in structural biology, including the arrangement of supramolecular complexes and fibril formation in relation to molecular folding, misfolding and aggregation. Advances in Biological Solid-State NMR brings the reader up to date with chapters from international leaders of this growing field, covering the most recent developments in the methodology and applications of solid-state NMR to studies of membrane interactions and molecular motions. A much needed discussion of membrane systems is detailed alongside important developments in in situ analysis. Topics include applications to biological membranes, membrane active peptides, membrane proteins, protein assemblies and in-cell NMR. This exposition of an invaluable technique will interest those working in a range of related spectroscopic and biological fields. A basic introduction invites those interested to familiarise themselves with the basic mathematical and conceptual foundations of solid-state NMR. A thorough and comprehensive discussion of this promising technique follows, which is essential reading for those working or studying at postgraduate level in this exciting field.
This book focuses on angle-resolved photoemission spectroscopy studies on novel interfacial phenomena in three typical two-dimensional material heterostructures: graphene/h-BN, twisted bilayer graphene, and topological insulator/high-temperature superconductors. Since the discovery of graphene, two-dimensional materials have proven to be quite a large "family". As an alternative to searching for other family members with distinct properties, the combination of two-dimensional (2D) materials to construct heterostructures offers a new platform for achieving new quantum phenomena, exploring new physics, and designing new quantum devices. By stacking different 2D materials together and utilizing interfacial periodical potential and order-parameter coupling, the resulting heterostructure's electronic properties can be tuned to achieve novel properties distinct from those of its constituent materials. This book offers a valuable reference guide for all researchers and students working in the area of condensed matter physics and materials science.
The content of this book describes in detail the results of the present measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, beside other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. The incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons (*) X-ray-ion coincidence spectroscopy of the electron xenon atom collisions is also described. The present measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases by electron impact are also described in the text of this book. The results of the measurements for sulfur dioxide molecule show how this major atmospheric pollutant can be removed from the atmosphere by electron impact dissociation of this molecule. The present results of the measurements for sulfur hexa fluoride give an insight into the dissociation properties of this molecular gas, which is being so widely used as a gaseous insulator in the electrical circuits. The book also describes the present measurements of the polarization parameters of the fluorescence radiation emitted by the electron-impact-excited atoms of sodium and potassium. In these investigations the target atoms are polarized, therefore, the measurements of the polarization parameters give information about the electron atom interaction in terms of the interference, direct and exchange interaction channels.
This book presents and discusses recent developments in the broad field of spectroscopy, providing the reader with an updated overview. The main objective is to introduce them to recent innovations and current trends in spectroscopy applied to molecules and materials. The book also brings together experimentalists and theoreticians to highlight the multidimensional aspects of spectroscopy and discuss the latest issues. Accordingly, it provides insights not only into the general goals of spectroscopy, but also into how the various spectroscopic techniques represent a toolbox that can be used to gain a more detailed understanding of molecular systems and complex chemical problems. Besides technical aspects, basic theoretical interpretations of spectroscopic results are also presented. The spectroscopy techniques discussed include UV-visible absorption spectroscopy, Raman spectroscopy, IR absorption spectroscopy, fluorescence spectroscopy, and time-resolved spectroscopy. In turn, basic tools like lasers and theoretical modeling approaches are also presented. Lastly, applications for the characterization of fundamental properties of molecules (environmental aspects, biomolecules, pharmaceutical drugs, hazardous molecules, etc.) and materials (nanomaterials, nuclear chemistry materials, biomaterials, etc.) are discussed. Given its scope, the book offers a valuable resource for researchers from various branches of science, and presents new techniques that can be applied to their specific problems.
Reviews in Plasmonics is a comprehensive collection of current trends and emerging hot topics in the field of Plasmonics and closely related disciplines. It summarizes the years progress in Plasmonics and its applications, with authoritative analytical reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of Plasmonics.
Fundamentals of Magnonics is a textbook for beginning graduate students in the areas of magnetism and spintronics. The level of presentation assumes only basic knowledge of the origin of magnetism and electromagnetism, and quantum mechanics. The book utilizes elementary mathematical derivations, aimed mainly at explaining the physical concepts involved in the phenomena studied and enabling a deeper understanding of the experiments presented. Key topics include the basic phenomena of ferromagnetic resonance in bulk materials and thin films, semi-classical theory of spin waves, quantum theory of spin waves and magnons, magnons in antiferromagnets, parametric excitation of magnons, nonlinear and chaotic phenomena, Bose-Einstein condensation of magnons, and magnon spintronics. Featuring end-of-chapter problem sets accompanied by extensive contemporary and historical references, this book provides the essential tools for any graduate or advanced undergraduate-level course of studies on the emerging field of magnonics.
How can these compounds be separated? Why was that method used? These are the two basic questions often asked by students of chromatography. HPLC: A Practical Guide provides the answers, enabling the reader to grasp the concepts of the technique using simple, representative chromatograms. Divided into six chapters, this practical guide covers basic concepts of HPLC; instrumentation; stationary phase materials; eluents; column efficiency; and the influence of physical chemistry on separations. Focusing on the basic considerations such as selection of stationary phase and eluent, rather than specific applications, sections on troubleshooting are also included. Uniquely, the descriptions of chromatographic separations are based on solubility using molecular properties, and solubility parameters are used to analyse the selections of chromatographic mode and column. Presenting the chemistry of liquid chromatography for undergraduate students, this valuable practical guide will also be useful for laboratory staff in industry and academia.
This book covers the fundamental aspects and the application of electrochemical impedance spectroscopy (EIS), with emphasis on a step-by-step procedure for mechanistic analysis of data. It enables the reader to learn the EIS technique, correctly acquire data from a system of interest, and effectively interpret the same. Detailed illustrations of how to validate the impedance spectra, use equivalent circuit analysis, and identify the reaction mechanism from the impedance spectra are given, supported by derivations and examples. MATLAB (R) programs for generating EIS data under various conditions are provided along with free online video lectures to enable easier learning. Features: Covers experimental details and nuances, data validation method, and two types of analysis - using circuit analogy and mechanistic analysis Details observations such as inductive loops and negative resistances Includes a dedicated chapter on an emerging technique (Nonlinear EIS), including code in the supplementary material illustrating simulations Discusses diffusion, constant phase element, porous electrodes, and films Contains exercise problems, MATLAB codes, PPT slide, and illustrative examples This book is aimed at senior undergraduates and advanced graduates in chemical engineering, analytical chemistry, electrochemistry, and spectroscopy.
This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Image calculations can help the user to interpret and understand high resolution information in recorded electron micrographs. The book contains expanded sections on aberration correction, including a detailed discussion of higher order (multipole) aberrations and their effect on high resolution imaging, new imaging modes such as ABF (annular bright field), and the latest developments in parallel processing using GPUs (graphic processing units), as well as updated references. Beginning and experienced users at the advanced undergraduate or graduate level will find the book to be a unique and essential guide to the theory and methods of computation in electron microscopy.
Inelastic neutron scattering (INS) is a spectroscopic technique in which neutrons are used to probe the dynamics of atoms and molecules in solids and liquids. This book is the first, since the late 1960s, to cover the principles and applications of INS as a vibrational-spectroscopic technique. It provides a hands-on account of the use of INS, concentrating on how neutron vibrational spectroscopy can be employed to obtain chemical information on a range of materials that are of interest to chemists, biologists, materials scientists, surface scientists and catalyst researchers. This is an accessible and comprehensive single-volume primary text and reference source.
When considering the biological significance and industrial and medical applications of biopolymers, it is crucial to know details of their secondary structure, dynamics and assembly. The biopolymers include globular, membrane and fibrous proteins, polypeptides, nucleic acids, polysaccharides and lipids. Solid state NMR spectroscopy has proved to be the most suitable and unrivaled means for investigations of biopolymers. The major advantage of solid state NMR spectroscopy is that the resulting line widths can be manipulated experimentally and are not influenced by motional fluctuation of proteins under consideration as a whole. Solid State NMR Spectroscopy for Biopolymers: Principles and Applications provides a comprehensive account on how the conformation and dynamics of such biopolymers can be revealed by solid state NMR spectroscopy. Special efforts have been made towards the historical and chronological consequences of a variety of applications and the dynamic aspects of the biopolymer system. In particular, the authors emphasise how important it is to record the most simple DD-MAS (one pulse excitation with high power decoupling) as a mean of locating very flexible portions of membrane proteins and membrane associated peptides. The authors also demonstrate that dynamic features of membrane proteins with a timescale of fast (108 Hz) and intermediate (104 -105 Hz) fluctuation motions can be revealed easily by specific suppression of peaks.
An Introduction to Analytical Atomic Spectrometry is a thoroughly revised and updated version of the highly successful book by Les Ebdon, An Introduction to Atomic Absorption Spectroscopy. The change in title reflects the number of significant developments in the field of atomic spectrometry since publication of the earlier book. New topics include plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Key features:
E = mc2 and the Periodic Table . . .
Applications of Time-of-Flight and Orbitrap Mass Spectrometry in Environmental, Food, Doping, and Forensic Analysis deals with the use of high-resolution mass spectrometry (MS) in the analysis of small organic molecules. Over the past few years, time-of-flight (ToF) and Orbitrap MS have both experienced tremendous growth in a great number of analytical sectors and are now well established in many laboratories where high requirements are placed on analytical performance. This book gives a head-to-head comparison of these two technologies that compete directly with each other. As users with hands-on experience in both techniques, the authors provide a balanced description of the strengths and weaknesses of both techniques. In the vast majority of cases, ToF-MS and Orbitrap-MS have been used for qualitative purposes, mainly identification of discrete molecular entities such as drug metabolites or transformation products of environmental contaminants. This paradigm is now changing as quantitative capabilities are increasingly being explored, as are non-target approaches for unbiased broad-scope screening. In view of the continuous innovation of high-resolution MS instrument manufacturers in designing and developing more powerful machines, technological advances in both hardware and software are considerable, with many novel applications. This book summarizes and analyzes these trends. The compilation of selected examples from diverse analytical fields will allow the readers to discover not only the potential of high-resolution MS in their sector, but also shows advances in other fields that rely on hi-res MS.
The new edition of the popular introductory analytical chemistry textbook, providing students with a solid foundation in all the major instrumental analysis techniques currently in use The third edition of Chemical Analysis: Modern Instrumentation Methods and Techniques provides an up-to-date overview of the common methods used for qualitative, quantitative, and structural chemical analysis. Assuming no background knowledge in the subject, this student-friendly textbook covers the fundamental principles and practical aspects of more than 20 separation and spectroscopic methods, as well as other important techniques such as elemental analysis, electrochemistry and isotopic labelling methods. Avoiding technical complexity and theoretical depth, clear and accessible chapters explain the basic concepts of each method and its corresponding instrumental techniques--supported by explanatory diagrams, illustrations, and photographs of commercial instruments. The new edition includes revised coverage of recent developments in supercritical fluid chromatography, capillary electrophoresis, miniaturized sensors, automatic analyzers, digitization and computing power, and more. Offering a well-balanced introduction to a wide range of analytical and instrumentation techniques, this textbook: Provides a detailed overview of analysis methods used in the chemical and agri-food industries, medical analysis laboratories, and environmental sciences Covers various separation methods including chromatography, electrophoresis and electrochromatography Describes UV and infrared spectroscopy, fluorimetry and chemiluminescence, x-ray fluorescence, nuclear magnetic resonance and other common spectrometric methods such atomic or flame emission, atomic absorption and mass spectrometry Includes concise overview chapters on the general aspects of chromatography, sample preparation strategies, and basic statistical parameters Features examples, end-of-chapter problems with solutions, and a companion website featuring PowerPoint slides for instructors Chemical Analysis: Modern Instrumentation Methods and Techniques, Third Edition, is the perfect textbook for undergraduates taking introductory courses in instrumental analytical chemistry, students in chemistry, pharmacy, biochemistry, and environmental science programs looking for information on the techniques and instruments available, and industry technicians working with problems of chemical analysis. Review of Second Edition "An essential introduction to a wide range of analytical and instrumentation techniques that have been developed and improved in recent years." --International Journal of Environmental and Analytical Chemistry
This handbook is a breakthrough in the understanding of the large number of spectral lines in diamond. Data on more than 2000 lines and bands are presented in 200 tables, including many unpublished results. With a novel organization scheme, the search for a specific line is greatly simplified as a benefit for researchers and students. In order to meet the interest in the understanding of the spectra, structure assignments for 80 % of the lines are given, of which 15 % only were published before. The majority of the structures for the 300 centers is explained in most cases for the first time. A key instrument in the interpretation is the analysis by donor-acceptor pair transitions. In a special chapter 95 such centers are listed and discussed, of which only two have been published before, the first one by the present author in 1994. |
![]() ![]() You may like...
Time Series Analysis - With Applications…
Jonathan D. Cryer, Kung-Sik Chan
Hardcover
R2,636
Discovery Miles 26 360
Mathematical and Statistical Estimation…
Gerardo Chowell, James M. Hayman, …
Hardcover
R5,081
Discovery Miles 50 810
|