![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
A concise, up-to-date overview of the applications of mass spectrometry To be able to estimate the potentiality of grapes and how it may be transferred into wine is key to grasping enological chemistry. Nowadays, mass spectrometry is a crucial aspect in ensuring the production, the quality, and the safety of grape, wine, and grape derivative products. Mass Spectrometry in Grape and Wine Chemistry examines in depth the relationship between the high structural identification power of mass spectrometry techniques and the chemistry of grapes and wine. The text is divided into two parts. The first section provides an overview of mass spectrometry methods in relation to enology in three chapters. The second section offers seven chapters on wine chemistry as well as traditional topics and new developments in mass spectrometry. Mass Spectrometry in Grape and Wine Chemistry explores many mass spectrometry applications, including: Ionization methods Mass analyzers and mass measurements Mass spectrometry methodologies Grape aroma compounds Volatile and aroma compounds in wines Grape and wine polyphenols Compounds released by wood into wine Wine defects caused by compounds Pesticide detection analysis Peptides and proteins of grape and wine Written by leading experts in the field, this book presents an introduction to mass spectrometry and outlines ways to maximize quality control and product safety for the best results. Mass Spectrometry in Grape and Wine Chemistry is an essential handbook for laboratories working in enology.
A blend of theory and practical advice, Modern NMR Techniques for Synthetic Chemistry illustrates how NMR spectroscopy can be used to determine the abundance, size, shape, and function of organic molecules. It provides you with a description the NMR technique used (more pictorial than mathematical), indicating the most common pulse sequences, some practical information as appropriate, followed by illustrative examples. This format is followed for each chapter so you can skip the more theoretical details if the practical aspects are what interest you. Following a discussion of basic parameters, the book describes the utility of NMR in detecting and quantifying dynamic processes, with particular emphasis on the usefulness of saturation-transfer (STD) techniques. It details pulsed-field gradient approaches to diffusion measurement, diffusion models, and approaches to 'inorganic' nuclei detection, important as many synthetic pathways to new organics involve heavier elements. The text concludes with coverage of applications of NMR to the analysis of complex mixtures, natural products, carbohydrates, and nucleic acids-all areas of activity for researchers working at the chemistry-life sciences interface. The book's unique format provides some theoretical insight into the NMR technique used, indicating the most common pulse sequences. The book draws upon several NMR methods that are resurging or currently hot in the field and indicates the specific pulse sequence used by various spectrometer manufacturers for each technique. It examines the analysis of complex mixtures, a feature not found in most books on this topic.
Addressing all aspects of the design, modeling and simulation of chromatographic processes, this result-oriented primer provides a practical guide to all the necessary approaches, methodologies and tools. Beginning with key definitions and concepts, it builds up from the most simple to the most complex situations, including multicomponent systems, non-uniform velocity profiles, bed instability, particle size distributions, and the influence of complex environments on chromatographic process design. In addition to covering classical approaches, it introduces efficient tools for investigating chromatographic processes, such as the 'Russian-Lego' approach for linear systems, phenomenological models, and specific shortcuts for deriving the key properties of industrial processes. With an emphasis on real-world problems and applications, step-by step modeling design guidelines, and detailed exercises for self-assessment, this is a must-have guide for practitioners and researchers working in chemical, biochemical, food and pharmaceutical engineering.
Industrial Analysis with Vibrational Spectroscopy is an integrated work which emphasises the synergy and complementary nature of the techniques of infrared and Raman spectroscopy in industrial laboratories. The book is written in a pragmatic and straight-forward manner and is illustrated throughout with examples of real-world, everyday problems and applications. It provides a developed, realistic insight into industrial analysis with vibrational spectroscopy for both undergraduate and academic researcher, while additionally providing a straight-forward working tool of value to the industrial laboratory worker.
Reflecting the myriad changes and advancements in the technologies involved in FTIR, particularly the development of diamond ATRs, this second edition of Fundamentals of Fourier Transform Infrared Spectroscopy has been extensively rewritten and expanded to include new topics and figures as well as updates of existing chapters. Designed for those new to FTIR, but with enough reference material to appeal to journeyman and expert spectroscopists, this book does not demand any extensive familiarity with chemistry or physics. Specializing in concise and comprehensible explanations of FTIR topics, the author introduces the field of infrared spectroscopy, including the strengths and weaknesses of FTIR as a chemical analysis technique. He then describes the instrument itself and explores topics such as how an interferometer generates a spectrum, optimization of spectral quality, and which tests are used to monitor instrument health. The book discusses how to properly use spectral processing to increase the information of a spectrum without damaging the data and takes considerable care in instructing on sample preparation, as good sample preparation constitutes half the battle in extracting good data. The final chapters examine single analyte quantitative analysis and conclude with an overview of infrared microscopy. Drawing on the experience and knowledge of the author as both a professor and practitioner, Fundamentals of Fourier Transform Infrared Spectroscopy offers up-to-date information given in clear, easily understood language to appeal to beginner and expert spectroscopists alike. The author maintains a website and blog with supplemental material. His training course schedule is also available online.
This concise and carefully developed text offers a reader friendly guide to the basics of time-resolved spectroscopy with an emphasis on experimental implementation. The authors carefully explain and relate for the reader how measurements are connected to the core physical principles. They use the time-dependent wave packet as a building block for understanding quantum dynamics, progressively advancing to more complex topics. The topics are discussed in paired sections, one discussing the theory and the next presenting the related experimental methods. A wide range of readers including students and newcomers to the field will gain a clear and practical understanding of how to measure aspects of molecular dynamics such as wave packet motion, intramolecular vibrational relaxation, and electron-electron coupling, and how to describe such measurements mathematically.
Rapid, inexpensive, and easy-to-deploy, near-infrared (NIR) spectroscopy can be used to analyze samples of virtually any composition, origin, and condition. The Handbook of Near Infrared Analysis, Fourth Edition, explores the factors necessary to perform accurate and time- and cost-effective analyses across a growing spectrum of disciplines. This updated and expanded edition incorporates the latest advances in instrumentation, computerization, chemometrics applied to NIR spectroscopy, and method development in NIR spectroscopy, and underscores current trends in sample preparation, calibration transfer, process control, data analysis, instrument performance testing, and commercial NIR instrumentation. This work offers readers an unparalleled combination of theoretical foundations, cutting-edge applications, and practical experience. Additional features include the following: Explains how to perform accurate as well as time- and cost-effective analyses. Reviews software-enabled chemometric methods and other trends in data analysis. Highlights novel applications in pharmaceuticals, polymers, plastics, petrochemicals, textiles, foods and beverages, baked products, agricultural products, biomedicine, nutraceuticals, and counterfeit detection. Underscores current trends in sample preparation, calibration transfer, process control, data analysis, and multiple aspects of commercial NIR instrumentation. Offering the most complete single-source guide of its kind, the Handbook of Near Infrared Analysis, Fourth Edition, continues to offer practicing chemists and spectroscopists an unparalleled combination of theoretical foundations, cutting-edge applications, and detailed practical experience provided firsthand by more than 50 experts in the field.
Jump into the HPLC adventure Three decades on from publication of the 1st German edition of Veronika Meyer's book on HPLC, this classic text remains one of the few titles available on general HPLC aimed at practitioners. New sections on the following topics have been included in this fifth edition: Comparison of HPLC with capillary electrophoresisHow to obtain peak capacityvan Deemter curves and other coherencesHydrophilic interaction chromatographyMethod transferComprehensive two-dimensional HPLCFast separations at 1000 barHPLC with superheated water In addition, two chapters on the instrument test and troubleshooting in the appendix have been updated and expanded by Bruno E. Lendi, and many details have been improved and numerous references added. A completely new chapter is presented on quality assurance covering: Is it worth the effort?Verification with a second methodMethod validationStandard operating proceduresMeasurement uncertaintyQualifications, instrument test, and system suitability testThe quest for quality Reviews of earlier editions "That this text is written by an expert in both the practice and teaching of HPLC is evident from the first paragraph....not only an enjoyable, fascinating and easy read, but a truly excellent text that has and will serve many teachers, students and practitioners very well." --"The Analyst" ..".provides essential information on HPLC for LC practitioners in academia, industry, government, and research laboratories...a valuable introduction." - "American Journal of Therapeutics"
Helping you better understand the processes, instruments, and methods of aerosol spectroscopy, Fundamentals and Applications in Aerosol Spectroscopy provides an overview of the state of the art in this rapidly developing field. It covers fundamental aspects of aerosol spectroscopy, applications to atmospherically and astronomically relevant problems, and several aspects that need further research and development. Chapters in the book are arranged in order of decreasing wavelength of the light/electrons. The text starts with infrared spectroscopy, one of the most important aerosol characterization methods for laboratory studies, field measurements, remote sensing, and space missions. It then focuses on Raman spectroscopy for investigating aerosol processes in controlled laboratory studies and for analyzing environmental particles and atmospheric pollution. The next section discusses the use of cavity ring-down spectroscopy to measure light extinction, laser-induced fluorescence spectroscopy to identify and classify biological aerosol particles, and ultrafast laser techniques to improve the specificity of bioaerosol detection. The final section examines recent developments involving novel techniques based on UV, x-ray, and electron beam studies. This book offers the first comprehensive overview of the spectroscopy of aerosols. It includes some results for the first time in the literature and presents a unique link between fundamental aspects and applications.
Computational Quantum Chemistry, Second Edition, is an extremely useful tool for teaching and research alike. It stipulates information in an accessible manner for scientific investigators, researchers and entrepreneurs. The book supplies an overview of the field and explains the fundamental underlying principles. It also gives the knowledge of numerous comparisons of different methods. The book consists of a wider range of applications in each chapter. It also provides a number of references which will be useful for academic and industrial researchers. It includes a large number of worked-out examples and unsolved problems for enhancing the computational skill of the users. Features Includes comprehensive coverage of most essential basic concepts Achieves greater clarity with improved planning of topics and is reader-friendly Deals with the mathematical techniques which will help readers to more efficient problem solving Explains a structured approach for mathematical derivations A reference book for academicians and scientific investigators Ram Yatan Prasad, PhD, DSc (India), DSc (hc) Colombo, is a Professor of Chemistry and former Vice Chancellor of S.K.M University, Jharkhand, India. Pranita, PhD, DSc (hc) Sri Lanka, FICS, is an Assistant Professor of Chemistry at Vinoba Bhave University, India.
This book presents research into chemical, biological, radiological and nuclear (CBRN) defense and environmental security, exploring practical implications of the research. Contributions from a diverse group of international civilian researchers present the latest work on nanotechnology problems in this area, looking at detection, protective technologies, decontamination and threats to environmental security due to bacteriophages and nanomaterials. Highlights include the potential of Atomic Force Microscopy (AFM) to characterize the nanoscale properties of microbial pathogens, the development of bacteriophage-based therapeutics, prophylactic and diagnostic preparations and their uses in different fields, such as medicine, veterinary, agriculture, food and water safety, amongst others. Readers may also consider an inexpensive bioassay suited for assessing chemical poisoning in the environment such as the presence of pesticides, sensors to detect ultra-trace quantities of the explosive Pentaerythritol tetranitrate (PETN) using nanotubes and electrochemical sensors to simultaneously detect and reduce the explosive trinitrotoluene (TNT) to 2,4,6-triaminotoluene (TAT) in solution. This book shows how cooperative research among NATO countries and NATO partners can make a critical contribution to meeting the opportunities and challenges of nanotechnology problems relevant to chemical and biological defense needs. The papers presented here are representative of contributions made to the Advanced Research Workshop (ARW) on September 22-26, 2014 in Antalya, Turkey, to address the NATO SPS Key Priority of Defense against CBRN Agents and Environmental Security.
In the rapidly developing field of analysis it is important to be aware of the newest methods within available techniques. Chromatography and Capillary Electrophoresis in Food Analysis describes chromatographic and electrophoretic principles and procedures for analyses of various amphiphilic and hydrophilic biomolecules, particularly for food analysis. Providing basic information, including general sample preparation, the book then goes on to describe individual analytical methods and exemplify the strategy and methodologies employed for the analyses. The theory necessary to understand the methods and interpretation of results is also included, as are numerous detailed instructions on experiments. Tables, figures and references are included to give a complete picture. Chromatography and Capillary Electrophoresis in Food Analysis will be especially valuable for students and more experienced researchers interested in analysis of natural products, both inside and outside the field of food chemistry.
The significance of the development of solid-state lighting was underscored by the award of a Nobel Prize in 2014. It is important to build upon this work and to produce practical and versatile sources of quantum light, because these are essential components for the advancement of quantum photonic devices. These devices, in turn, promise new technologies that have the potential to revolutionize society. This book explores various ways of coupling quantum light into, and out of, solid-state emitters. The research presented here has led to important discoveries that will help overcome major challenges in this field.
Photoemission spectroscopy is one of the most extensively used methods to study the electronic structure of atoms, molecules, and solids and their surfaces. This volume introduces and surveys the field at highest energy and momentum resolutions allowing for a new range of applications, in particular for studies of high temperature superconductors.
Accurate prediction of hydrological variables is essential for efficient water resources planning and management. Proper understanding of the characteristics of the time series may help in improving the simulation and forecasting accuracy of hydrological variables. This book presents a detailed description and application of multiscale time-frequency characterization tool for the spectral analysis of hydrological time series. It presents spectral analysis methods for hydrological applications through a wide variety of illustrative case studies including Wavelet transforms, Hilbert Huang Transform and their extensions.
In recent years, no other technique has gained such significance
as NMR spectroscopy. It is used in all branches of science in which
precise structural determination is required and in which the
nature of interactions and reactions in solution is being studied.
Annual Reports on NMR Spectroscopy has established itself as a
premier means for the specialist and non-specialist alike to become
familiar with new techniques and applications of NMR
spectroscopy. * Provides updates on the latest developments in NMR spectroscopy * Includes comprehensive review articles * Highlights the increasing importance of NMR spectroscopy as a technique for structural determination
For more than four decades, scientists and researchers have relied on the Advances in Chromatography Series for the most up-to-date information on a wide range of developments in chromatographic methods and applications. With contributions from an array of international experts, the latest volume captures new developments in this important field that yields great possibilities in a number of applications. The authors? clear presentation of topics and vivid illustrations make the material in Volume 48 accessible and engaging to biochemists and analytical, organic, polymer, and pharmaceutical chemists at all levels of technical skill. Topics covered in this new edition include:
Covering the state of the art in separation science, this volume presents timely, cutting-edge reviews on chromatography in the fields of bio-, analytical, organic, polymer, and pharmaceutical chemistry. The information contained in this latest volume will help fuel further research in this burgeoning field across the full spectrum of related disciplines.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has gained such
significance as NMR spectroscopy. It is used in all branches of
science in which precise structural determination is required and
in which the nature of interactions and reactions in solution is
being studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy. * Provides updates on the latest developments in NMR spectroscopy * Includes comprehensive review articles * Highlights the increasing importance of NMR spectroscopy as a technique for structural determination
This book on hollow fiber contractors presents an up-to-date compilation of the latest developments and milestones in this membrane technology. Hollow Fiber Membrane Contactors: Module Fabrication, Design and Operation, and Potential Applications provides a comprehensive discussion of hollow fiber membrane applications (including a few case studies) in biotechnology, chemical, food, and nuclear engineering. The chapters in this book have been classified using the following, based on different ways of contacting fluids with each other: Gas-liquid contacting; Liquid-liquid contacting; Supported liquid membrane; Supported gas membrane; Fluid-fluid contacting. Other features include: Discusses using non-dispersive solvent extraction, hollow fiber strip dispersion, hollow fiber supported liquid membranes and role of process intensification in integrated use of these processes Provides technical and economic perspectives with several case studies related to specific scenarios Demonstrates module fabrication, design, operation and maintenance of hollow fiber contactors for different applications and performance Presents discussion on newer concepts like membrane emulsification, membrane nanoprecipitation, membrane crystallization and membrane condenser Special focus on emerging areas such as the use of hollow fiber contactor in back end of nuclear fuel cycle, membrane distillation, dehumidification of air and gas absorption and stripping Discusses theoretical analysis including computational modeling of different hollow fiber membrane processes, and presents emphasis on newly developed area of hollow fiber membrane based analytical techniques Presents discussion on upcoming area dealing with hollow fiber contactors-based technology in fermentation and enzymatic transformation and in chiral separations This book is equally suited for newcomers to the field, as well as for engineers and scientists that have basic knowledge in this field but are interested in obtaining more information about specific future applications.
The book reviews the basic concepts and highlights the most
relevant advances and developments that have taken place in the
field of comprehensive two dimensional gas chromatography (GC x GC)
since its introduction in 1991. The several instrumental and
technical approaches assayed and developed during these seventeen
years and that have contributed to the development of this powerful
separation technique and to its increasing application in many
areas is explained and comprehensively illustrated through a number
of chapters devoted these specific topics. More specialized aspects
of the technique, including theoretical aspects, modelization of
the chromatographic process, software developments, and alternative
couplings is also covered. Finally, special attention is paid to
data treatment, for both qualitative and quantitative analysis.
This book will be a practical resource that will explain from basic
to specialized concepts of GC x GC and will show the current
state-of-the-art and discuss future trends of this technique.
Established ion chromatography techniques have changed little since the 1980s but a new technique, high performance chelation ion chromatography (HPCIC), has revolutionized the area. HPCIC enables a much greater range of complex samples to be analyzed and this is the first comprehensive description of its use in the trace determination of metals. Written by world leaders in the field, it is aimed at professionals, postgraduates, chromatographers, analytical chemists, and industrial chemists. The book describes the underlying principles which give rise to the special selectivities that can be chosen for separating specific groups of metals. It also covers the latest research and gives many examples of its application to real samples. The very latest developments in detection techniques are included showing that HPCIC can rival atomic spectroscopic techniques such as ICP-MS. The detailed description of the fundamental principles controlling the separation of trace metals using chelating substrates is unique to this book. It shows how HPCIC differs from the commonly used simple ion exchange techniques and how these chelation characteristics give rise to a much more useful and versatile metal separation system. Readers will also be interested in the analysis of extremely difficult matrices, such as saturated brines, easily achieved by HPCIC but requiring very complex multi column systems using other ion chromatography methods.
Gradient elution demystified
The field of bioseparation, and biochromatography in particular, is advancing very rapidly as our knowledge of the properties of molecules and atomic forces increases. This volume covers the basic principles of biochromatography in detail. It assesses different techniques and includes a large number of applications, providing the reader with a multidisciplinary perspective that gives the insight to master the many chromatographic methods. Biochromatography: Theory and Practice is a valuable tool for graduate and research scientists, technicians, engineers and teachers in a range of fields including biochemistry, biotechnology, biorecognition and chromatography.
This book provides a thorough account of the current status of achievements made in the area of soft X-Ray laser source development and of the increasingly diverse applications being demonstrated using such radiation sources. There is significant effort worldwide to develop very bright, short duration radiation sources in the X-Ray spectral region - driven by the multitude of potential applications in all branches of science. This book contains updates on several different approaches for comparative purposes but concentrates on developments in the area of laser-produced plasmas, whereby transient population inversion and gain between ion states is pumped by optical lasers interacting with pre-formed plasmas. Topics covered will include Laser-driven XRLs, Collisional XRLs, Recombination XRLs, Transient Inversion Collisional XRLs, Optical Field Ionization XRLs, Alternative XRL, pumping schemes Theory and simulations of XRL gain media and beam properties High order harmonic sources of XUV radiation, Free-electron lasers and other accelerator based X-Ray sources, X-Ray Laser drives, X-Ray optics and instrumentation Spectroscopy, and other diagnostics of laser media Applications of XRLs.
This book describes the most important high-resolution NMR
techniques that find use in the structure elucidation of organic
molecules and the investigation of their behavior in solution.
|
![]() ![]() You may like...
|