![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
The X-ray standing wave (XSW) technique is an X-ray interferometric method combining diffraction with a multitude of spectroscopic techniques. It is extremely powerful for obtaining information about virtually all properties of surfaces and interfaces on the atomic scale. However, as with any other technique, it has strengths and limitations. The proper use and necessary understanding of this method requires knowledge in quite different fields of physics and technology. This volume presents comprehensively the theoretical background, technical requirements and distinguished experimental highlights of the technique. Containing contributions from the most prominent experts of the technique, such as Andre Authier, Boris Batterman, Michael J Bedzyk, Jene Golovchenko, Victor Kohn, Michail Kovalchuk, Gerhard Materlik and D Phil Woodruff, the book equips scientists with all the necessary information and knowledge to understand and use the XSW technique in practically all applications.
Digital photography, MP3, digital video, etc. make extensive use of NAND-based Flash cards as storage media. To realize how much NAND Flash memories pervade every aspect of our life, just imagine how our recent habits would change if the NAND memories suddenly disappeared. To take a picture it would be necessary to find a film (as well as a traditional camera...), disks or even magnetic tapes would be used to record a video or to listen a song, and a cellular phone would return to be a simple mean of communication rather than a multimedia console. The development of NAND Flash memories will not be set down on the mere evolution of personal entertainment systems since a new killer application can trigger a further success: the replacement of Hard Disk Drives (HDDs) with Solid State Drives (SSDs). SSD is made up by a microcontroller and several NANDs. As NAND is the technology driver for IC circuits, Flash designers and technologists have to deal with a lot of challenges. Therefore, SSD (system) developers must understand Flash technology in order to exploit its benefits and countermeasure its weaknesses. Inside NAND Flash Memories is a comprehensive guide of the NAND world: from circuits design (analog and digital) to Flash reliability (including radiation effects), from testing issues to high-performance (DDR) interface, from error correction codes to NAND applications like Flash cards and SSDs.
Nuclear magnetic resonance (NMR) is an analytical tool used by
chemists and physicists to study the structure and dynamics of
molecules. In recent years, no other technique has gained such
significance as NMR spectroscopy. It is used in all branches of
science in which precise structural determination is required and
in which the nature of interactions and reactions in solution is
being studied. "Annual Reports on NMR Spectroscopy" has established
itself as a premier means for the specialist and non-specialist
alike to become familiar with new techniques and applications of
NMR spectroscopy.
"Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials "describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs) interfacing with organic and inorganic materials. The three main chapters detail novel trends in photophysics related to the interaction of light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures. The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: -Light harvesting, energy conversion, photoinduced charge separation and transport in CNT based nanohybrids -CNT/polymer composites exhibiting photoactuation; and -Optical spectroscopy and structure of CNT/DNA complexes. Including original data and a short review of recent research, "Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials" makes this emerging field of photophysics and its applications available to academics and professionals working with carbon nanotube composites in fundamental and applied fields
This open access book brings out the state of the art on how informatics-based tools are used and expected to be used in nanomaterials research. There has been great progress in the area in which "big-data" generated by experiments or computations are fully utilized to accelerate discovery of new materials, key factors, and design rules. Data-intensive approaches play indispensable roles in advanced materials characterization. "Materials informatics" is the central paradigm in the new trend. "Nanoinformatics" is its essential subset, which focuses on nanostructures of materials such as surfaces, interfaces, dopants, and point defects, playing a critical role in determining materials properties. There have been significant advances in experimental and computational techniques to characterize individual atoms in nanostructures and to gain quantitative information. The collaboration of researchers in materials science and information science is growing actively and is creating a new trend in materials science and engineering.
This volume presents pedagogical content to understand theoretical and practical aspects of diagnostic imaging techniques. It provides insights to current practices, and also discusses specific practical features like radiation exposure, radiation sensitivity, signal penetration, tissue interaction, and signal confinement with reference to individual imaging techniques. It also covers relatively less common imaging methods in addition to the established ones. It serves as a reference for researchers and students working in the field of medical, biomedical science, physics, and instrumentation. Key Features * Focusses on the clinical applications while ensuring a steady understanding of the underlying science * Follows a bottom-up approach to cover the theory, calculations, and modalities to aid students and researchers in biomedical imaging, radiology and instrumentation * Covers unique concepts of nanoparticle applications along with ethical issues in medical imaging
Extensive studies of high-Tc cuprate superconductors have stimualted investigations into various transition-metal oxides. Mott transitions in particular provide fascinating problems and new concepts in condensed matter physics. This book is a collection of overviews by well-known, active researchers in this field. It deals with the latest developments, with particular emphasis on the theoretical, spectroscopic, and transport aspects.
During the last two decades, the use of NMR spectroscopy for the characterization and analysis of food materials has flourished, and this trend continues to increase today. Currently, there exists no book that fulfils specifically the needs of food scientists that are interested in adding or expanding the use of NMR spectroscopy in their arsenal of food analysis techniques. Current books and monographs are rather addressed to experienced researchers in food analysis providing new information in the field. This book, written by acknowledged experts in the field, fills the gap by offering a day to day NMR guide for the food scientist, affording not only the basic theoretical aspects of NMR spectroscopy, but also practical information on sample preparation, experimental conditions and data analysis. Current developments in the field covered in this book are the availability of solid state NMR experiments such as CP/MAS and more importantly HR-MAS NMR for the analysis of semisolid foods, and the increasing use of chemometrics to analyze NMR data in food metabonomics. Moreover, this book contains an up to date discussion of MRI in food analysis including topics such as food processing and natural changes in food such as ripening. The book is a compact and complete source of information for food scientists who wish to apply methodologies based on NMR spectroscopy in food analysis. It contains information so far scattered in the primary literature, in NMR treatises and food analysis books, in a concise format that makes it appealing to food scientists who have no or minimal experience in magnetic resonance techniques. The inclusion of practical information about NMR instrumentation, experiment setup, acquisition and spectral analysis for the study of different food categories make this book a hands-on manual for food scientists wishing to implement novel NMR spectroscopy-based analytical techniques in their field.
Stimulated by the increasing importance of chiral molecules as pharmaceuticals and the need for enantiomerically pure drugs, techniques in chiral chemistry have been expanded and refined, especially in the areas of chromatography, asymmetric synthesis, and spectroscopic methods for chiral molecule structural characterization. In addition to synthetic chiral molecules, naturally occurring molecules, which are invariably chiral and generally enantiomerically enriched, are of potential interest as leads for new drugs. VCD Spectroscopy for Organic Chemists discusses the applications of vibrational circular dichroism (VCD) spectroscopy to the structural characterization of chiral organic molecules. The book provides all of the information about VCD spectroscopy that an organic chemist needs in order to make use of the technique. The authors, experts responsible for much of the existing literature in this field, discuss the experimental measurement of VCD and the theoretical prediction of VCD. In addition, they evaluate the advantages and limitations of the technique in determining molecular structure. Given the availability of commercial VCD instrumentation and quantum chemistry software, it became possible in the late 1990s for chemists to use VCD in elucidating the stereochemistries of chiral organic molecules. This book helps organic chemists become more aware of the utility of VCD spectroscopy and provides them with sufficient knowledge to incorporate the technique into their own research.
For more than four decades, scientists and researchers have relied on the Advances in Chromatography series for the most up-to-date information on a wide range of developments in chromatographic methods and applications. For Volume 50, the series editors have invited established, well-known chemists from across the globe to offer cutting-edge reviews on their areas of expertise. The clear presentation of topics and vivid illustrations for which this series has become known makes the material accessible and engaging to analytical, biochemical, organic, polymer, and pharmaceutical chemists at all levels of technical skill.
Mathematical Techniques in XRay Spectrometry: Research in the Quantitative Analysis of Individual Particles by XRay Fluorescence Spectrometry (M. Lankosz et al.). Analysis of Light Elements by XRay Spectrometry: XRFA of Carbon in Steels (F. Weber et al.). XRS Techniques and Instrumentation: Diffraction Peaks in XRay Spectroscopy (R.G.Tissot, R.P. Goehner). OnLine, Industrial, and Other Applications of XRS: Application of XRF in the Aluminum Industry (F.R. Feret). XRay Characterization of Thin Films: Grazing Incidence XRay Characterization of Materials (D.K. Bowen, M. Wormington). WholePattern Fitting, Phase Analysis by Diffraction Methods: Phase Identification Using WholePattern Matching (D.K. Smith et al.). Polymer Applications of XRD. HighTemperature and NonAmbient Applications of XRD. Stress and Strain Determination by Diffraction Methods, Peak Broadening Analysis. XRD Techniques and Instrumentation. 71 additional articles. Index.
Molecular recognition, also known as biorecognition, is the heart of all biological interactions. Originating from protein stretching experiments, dynamic force spectroscopy (DFS) allows for the extraction of detailed information on the unbinding process of biomolecular complexes. It is becoming progressively more important in biochemical studies and is finding wider applications in areas such as biophysics and polymer science. In six chapters, Dynamic Force Spectroscopy and Biomolecular Recognition covers the most recent ideas and advances in the field of DFS applied to biorecognition:
Although DFS is a widespread, worldwide technique, no books focused on this subject have been available until now. Dynamic Force Spectroscopy and Biomolecular Recognition provides the state of the art of experimental data analysis and theoretical procedures, making it a useful tool for researchers applying DFS to study biorecognition processes.
Jump into the HPLC adventure Three decades on from publication of the 1st German edition of Veronika Meyer's book on HPLC, this classic text remains one of the few titles available on general HPLC aimed at practitioners. New sections on the following topics have been included in this fifth edition: Comparison of HPLC with capillary electrophoresisHow to obtain peak capacityvan Deemter curves and other coherencesHydrophilic interaction chromatographyMethod transferComprehensive two-dimensional HPLCFast separations at 1000 barHPLC with superheated water In addition, two chapters on the instrument test and troubleshooting in the appendix have been updated and expanded by Bruno E. Lendi, and many details have been improved and numerous references added. A completely new chapter is presented on quality assurance covering: Is it worth the effort?Verification with a second methodMethod validationStandard operating proceduresMeasurement uncertaintyQualifications, instrument test, and system suitability testThe quest for quality Reviews of earlier editions "That this text is written by an expert in both the practice and teaching of HPLC is evident from the first paragraph....not only an enjoyable, fascinating and easy read, but a truly excellent text that has and will serve many teachers, students and practitioners very well." --"The Analyst" ..".provides essential information on HPLC for LC practitioners in academia, industry, government, and research laboratories...a valuable introduction." - "American Journal of Therapeutics"
Nanotechnology has reached a level where almost every new development and even every new product uses features of nanoscopic properties of materials. As a consequence, an enormous amount of scientific instruments is used in order to synthesize and analyze new structures and materials. Due to the surface sensitivity of such materials, many of these instruments require ultrahigh vacuum that has to be provided under extreme conditions like very high voltages. In this book, Yoshimura provides a review of the UHV related development during the last decades. His very broad experience in the design enables him to present us this detailed reference. After a general description how to design UHV systems, he covers all important issue in detail, like pumps, outgasing, Gauges, and Electrodes for high voltages. Thus, this book serves as reference for everybody using UVH in his scientific equipment.
Thin-layer chromatography (TLC) is widely used particularly for pharmaceutical and food analysis. While there are a number of books on the qualitative identification of chemical substances by TLC, the unique focus here is on quantitative analysis. The authors describe all steps of the analytical procedure, beginning with the basics and equipment for quantitative TLC followed by sample pretreatment and sample application, development and staining, scanning, and finally statistical and chemometric data evaluation and validation. An important feature is the coverage of effect-directed biological detection methods. Chapters are organized in a modular fashion facilitating the easy location of information about individual procedural steps.
This work provides an introduction to those needing to use infrared spectroscopy for the first time, explaining the fundamental aspects of this technique, how to obtain a spectrum and how to analyse infrared data covering a wide range of applications. It includes instrumental and sampling techniques; covers biological and industrial applications; and, includes suitable questions and problems in each chapter to assist in the analysis and interpretation of representative infrared spectra. It is part of the "ANTS (Analytical Techniques in the Sciences) Series".
Spectroscopic Techniques and Hindered Molecular Motion presents a united, theoretical approach to studying classical local thermal motion of small molecules and molecular fragments in crystals by spectroscopic techniques. Mono- and polycrystalline case studies demonstrate performance validity. The book focuses on small molecules and molecular fragments, such as N2, HCl, CO2, CH4, H2O, NH4, BeF4, NH3, CH2, CH3, C6H6, SF6, and other symmetrical atomic formations, which exhibit local hindered motion in molecular condensed media: molecular and ionic crystals, molecular liquids, liquid crystals, polymeric solids, and biological objects. It reviews the state of studying the hindered molecular motion (HMM) phenomenon and the experimental works on the basis of the latest theoretical research. Case Studies Physical models of hindered molecular motion General solution of the stochastic problem for the hindered molecular motion in crystals Formulae of the angular autocorrelation function symmetrized on the crystallographic point symmetry groups Formulae of the spectral line shapes concerning the dielectric, infrared, Raman, nuclear magnetic relaxation, and neutron scattering spectroscopy in the presence of the hindered molecular motion Experimental probation of the theoretical outcomes Proton relaxation in three-atomic molecular fragments undergoing axial symmetry hindered motion Structural distortion in the ordered phase of crystalline ammonium chloride Organic compounds, polymers, pharmaceutical products, and biological systems consist of the molecular fragments, which possess rotational or conformational degrees of freedom or an atomic exchange within the fragme
A concise, up-to-date overview of the applications of mass spectrometry To be able to estimate the potentiality of grapes and how it may be transferred into wine is key to grasping enological chemistry. Nowadays, mass spectrometry is a crucial aspect in ensuring the production, the quality, and the safety of grape, wine, and grape derivative products. Mass Spectrometry in Grape and Wine Chemistry examines in depth the relationship between the high structural identification power of mass spectrometry techniques and the chemistry of grapes and wine. The text is divided into two parts. The first section provides an overview of mass spectrometry methods in relation to enology in three chapters. The second section offers seven chapters on wine chemistry as well as traditional topics and new developments in mass spectrometry. Mass Spectrometry in Grape and Wine Chemistry explores many mass spectrometry applications, including: Ionization methods Mass analyzers and mass measurements Mass spectrometry methodologies Grape aroma compounds Volatile and aroma compounds in wines Grape and wine polyphenols Compounds released by wood into wine Wine defects caused by compounds Pesticide detection analysis Peptides and proteins of grape and wine Written by leading experts in the field, this book presents an introduction to mass spectrometry and outlines ways to maximize quality control and product safety for the best results. Mass Spectrometry in Grape and Wine Chemistry is an essential handbook for laboratories working in enology.
Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy. These techniques are used by chemists, environmental scientists, forensic scientists etc to identify unknown chemicals. In the case of an organic chemist these tools are part of an armory of techniques that enable them to conclusively prove what compound they have made, which is essential for those being used in medical applications. The book reviews basic principles, instrumentation, sampling methods, quantitative analysis, origin of group frequencies and qualitative interpretation using generalized Infrared (IR) and Raman spectra. An extensive use of graphics is used to describe the basic principles of vibrational spectroscopy and the origins of group frequencies, with over 100 fully interpreted FT-IR and FT-Raman spectra included and indexed to the relevant qualitative interpretation chapter. A final chapter with forty four unknown spectra and with a corresponding answer key is included to test the readers understanding. Tables of frequencies (peaks) for both infrared and Raman spectra are provided at key points in the book and will act as a useful reference resource for those involve interpreting spectra. This book provides a solid introduction to vibrational
spectroscopy with an emphasis placed upon developing critical
interpretation skills. Ideal for those using and analyzing IR and
Raman spectra in their laboratories as well as those using the
techniques in the field. Uniquely integrates discussion of IR and Raman spectra Theory illustrated and explained with over 100 fully interpreted high quality FT-IR and FT-Raman spectra (4 cm-1 resolution) Selected problems at the end of chapters and 44 unknown IR and Raman spectra to test readers understanding (with a corresponding answer key)
Reflecting the myriad changes and advancements in the technologies involved in FTIR, particularly the development of diamond ATRs, this second edition of Fundamentals of Fourier Transform Infrared Spectroscopy has been extensively rewritten and expanded to include new topics and figures as well as updates of existing chapters. Designed for those new to FTIR, but with enough reference material to appeal to journeyman and expert spectroscopists, this book does not demand any extensive familiarity with chemistry or physics. Specializing in concise and comprehensible explanations of FTIR topics, the author introduces the field of infrared spectroscopy, including the strengths and weaknesses of FTIR as a chemical analysis technique. He then describes the instrument itself and explores topics such as how an interferometer generates a spectrum, optimization of spectral quality, and which tests are used to monitor instrument health. The book discusses how to properly use spectral processing to increase the information of a spectrum without damaging the data and takes considerable care in instructing on sample preparation, as good sample preparation constitutes half the battle in extracting good data. The final chapters examine single analyte quantitative analysis and conclude with an overview of infrared microscopy. Drawing on the experience and knowledge of the author as both a professor and practitioner, Fundamentals of Fourier Transform Infrared Spectroscopy offers up-to-date information given in clear, easily understood language to appeal to beginner and expert spectroscopists alike. The author maintains a website and blog with supplemental material. His training course schedule is also available online.
This book is the first example in presenting LC-MS strategies for the analysis of peptides and proteins with detailed information and hints about the needs and problems described from experts on-the-job. The best advantage is -for sure- the practical insight of experienced analysts into their novel protein analysis techniques. Readers starting in 'Proteomics' should be able to repeat each experiment with own equipment and own protein samples, like clean-up, direct protein analysis, after (online) digest, with modifications and others. Furthermore, the reader will learn more about strategies in protein analysis, like quantitative analysis, industrial standards, functional analysis and more.
This book presents the latest developments and issues in both experimental and theoretical studies of multi-photon processes and the spectroscopy of atoms, molecules and nanomaterials in Physics, Chemistry, Biology and Material Science. It is an important addition to an advanced series that contains review papers suitable for both active researchers in these areas and non-experts who wish to enter the field. Special attention is paid to the recent progress of nonlinear photon-matter interactions applied to femtosecond laser induced nonadiabatic molecular alignment, high-order harmonic generation from C60 fullerene plasma, resonant femtosecond stimulated Raman spectroscopy and attosecond pulse generation, as well as near-field optical imaging of noble-metal nanoparticles and photoexcited ultrafast electron transfer in condensed phase.
The Clermont-Ferrand-Theix Institut National de la Recherche Agronomique (INRA) was proud to organize the 10th International Conference on the applications of Magnetic Resonance in Food Science to celebrate its 10th anniversary. This scientific event was held from 13 to 15 September 2010 in Clermont-Ferrand. The conference attracted 90 participants from 14 countries from all over the world. The conference included 7 invited lectures, 19 oral presentations and 27 oral poster presentations. Moreover, before the scientific sessions, two postgraduate sessions were given in parallel every morning. The conference was divided in 6 sessions covering i) Data processing, ii)New developments/food system, iii) New developments/NMR, iv) Nutrition, v) Metabolomic and vi) Imaging. The book follows the form of the conference. This year's meeting corresponded to its 10th anniversary. The first international conference was held in 1992 at the University of Surrey in Guilford on Professor Peter Belton's and Professor Graham Webb's initiative. During the last 20 years, a lot of developments were performed and the next 20 years are also very exciting. This meeting presentations were focused on the new developments in NMR techniques: hardware as well software with metabolomic and imaging without the new applications of NMR tools in food of course and now in nutrition.
Accurate prediction of hydrological variables is essential for efficient water resources planning and management. Proper understanding of the characteristics of the time series may help in improving the simulation and forecasting accuracy of hydrological variables. This book presents a detailed description and application of multiscale time-frequency characterization tool for the spectral analysis of hydrological time series. It presents spectral analysis methods for hydrological applications through a wide variety of illustrative case studies including Wavelet transforms, Hilbert Huang Transform and their extensions.
The aim of this title is to document the meeting exploring the key challenges in understanding the biological chemistry of metals. State of the art work using advanced physical and computational methods to probe the electronic structure and the reactivity at the active sites of metalloenzymes is discussed. These investigations are truly interdisciplinary and the development and application of physical methods and computational chemistry to biological problems require spectroscopists and theoretical chemists to collaborate with each other and with a wide range of other scientists, notably biochemists and coordination chemists. This is particularity true as spectroscopy and theory typically prove insight into slightly different aspects of reactivity. The book will provide substantial benefits to both experimentalists and theoreticians working in this filed. |
You may like...
Photoacoustic and Photothermal…
Surya N. Thakur, Virendra N. Rai, …
Paperback
R4,417
Discovery Miles 44 170
Analytical Atomic Absorption…
Alfredo Sanz-Medel, Rosario Pereiro
Hardcover
R1,530
Discovery Miles 15 300
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,020
Discovery Miles 40 200
Advances in the Use of Liquid…
Achille Cappiello, Pierangela Palma
Hardcover
R6,341
Discovery Miles 63 410
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R59,229
Discovery Miles 592 290
The Encyclopedia of Mass Spectrometry…
Michael L. Gross, Richard M. Caprioli
Hardcover
R10,685
Discovery Miles 106 850
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R5,483
Discovery Miles 54 830
|