![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
The primary objective of this volume, the first in a new series entitled Theoretical and Computational Chemistry, is to survey some effective approaches to understanding, describing and predicting ways in which solutes and solvents interact and the effects they have upon each other. The treatment of solute/solvent interactions that is presented emphasizes a synergism between theory and experiment. Data obtained experimentally are used as a basis for developing quantitative theoretical models that permit the correlation and interpretation of the data, and also provide a predictive capability. The latter being of course a key motivation for these efforts. Linear solvation energy relationships have been quite successful in this respect and accordingly receive considerable attention. Other effective approaches, including computational ones, are also being pursued, and are discussed in several chapters. This is an area that is continually evolving, and it is hoped that the present volume will convey a sense of its dynamic nature.
Flame Spectrometry in Environmental Chemical Analysis is a simple, user-friendly guide to safe flame spectrometric methods for environmental samples. It explains key processes involved in achieving accurate and reliable results in atomic absorption spectrometry, atomic fluorescence spectrometry and flame emission spectrometry, showing the inter-relationship of the three techniques, and their relative importance. Flame Spectrometry in Environmental Chemical Analysis presents the important information with thoroughness and clarity, and in a style that makes it valuable to students and researchers using these techniques. It also offers straightforward reading for environmentalists with interests in such areas as pollution research, agriculture, ecology, soil science, geology and forestry; informing researchers of exactly what they can expect to be able to determine by flame spectrometric methods. Newcomers to flame spectrometry will gain increased confidence, job skills and many handy tips and ideas from this book. It will impart a strong working knowledge that can be translated into sound data in the laboratory.
Applications of Numerical Methods in Molecular Spectroscopy provides a mathematical background, theoretical perspective, and review of spectral data processing methods. The book discusses methods of complex spectral profile separation into bands, factor analysis methods, methods of quantitative analysis in molecular spectroscopy and reflectance spectroscopy, and new data processing methods. Mathematical methods in special areas of molecular spectroscopy, such as color science, electron spin resonance, and nuclear magnetic resonance spectroscopies are also covered. The book will benefit researchers and postgraduate students in fields of chemistry, physics, and biology.
For more than four decades, scientists and researchers have relied upon the Advances in Chromatography Series for the most up-to-date information on a wide range of developments in chromatographic methods and applications. Covering the state of the art in separation science, this volume continues to present timely, cutting-edge reviews on chromatography in the fields of bio-, analytical, organic, polymer, and pharmaceutical chemistry. Compiled by leading researchers from around the world, new chapters cover topics related to countercurrent chromatography and large-scale genotyping as well as cyclic voltammetry detection, a powerful tool for determining the electrochemical characteristics of organic compounds.
This book describes fundamental theory and recent advances of sum frequency generation (SFG) spectroscopy. SFG spectroscopy is widely used as a powerful tool of surface characterization, although theoretical interpretation of the obtained spectra has been a major bottleneck for most users. Recent advances in SFG theory have brought about a breakthrough in the analysis methods beyond conventional empirical ones, and molecular dynamics (MD) simulation of SFG spectroscopy allows for simultaneous understanding of observed spectra and interface structure in unprecedented detail. This book explains these recently understood theoretical aspects of SFG spectroscopy by the major developer of the theory. The theoretical topics are treated at basic levels for undergraduate students and are described in relation to computational chemistry, such as molecular modeling and MD simulation, toward close collaboration of SFG spectroscopy and computational chemistry in the near future.
This book provides a balanced blend of fundamental concepts of fabrication, characterization of conventional ceramics, extending to present the recent advances in ceramic membranes. It covers the basic concepts of ceramic membranes as well as practical and theoretical knowledge in conventional and advanced ceramic membranes combined with unorthodox ideas for novel approaches in ceramic membranes. Book includes lot of real time examples derived largely from research work by authors. Aimed at researchers, students and academics in the field of membrane engineering around the globe, it has following key features: Guides readers through manufacturing, characterizing and using low-cost ceramic technology. Provides an overview of the different types of ceramic membranes, catalytic reactors and their uses. Covers industrial application, separation and purification. Includes recent developments and advances in membrane fabrication. Discusses new raw materials for ceramic membranes.
A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners.
NMR Spectroscopy in Liquids and Solids provides an introduction of the general concepts behind Nuclear Magnetic Resonance (NMR) and its applications, including how to perform adequate NMR experiments and interpret data collected in liquids and solids to characterize molecule systems in terms of their structure and dynamics. The book is composed of ten chapters. The first three chapters consider the theoretical basis of NMR spectroscopy, the theory of NMR relaxation, and the practice of relaxation measurements. The middle chapters discuss the general aspects of molecular dynamics and their relationships to NMR, NMR spectroscopy and relaxation studies in solutions, and special issues related to NMR in solutions. The remaining chapters introduce general principles and strategies involved in solid-state NMR studies, provide examples of applications of relaxation for the determination of molecular dynamics in diamagnetic solids, and discuss special issues related to solid state NMR including NMR relaxation in paramagnetic solids. All chapters are accompanied by references and recommended literature for further reading. Many practical examples of multinuclear NMR and relaxation experiments and their interpretations are also presented. The book is ideal for scientists new to NMR, students, and investigators working in the areas of chemistry, biochemistry, biology, pharmaceutical sciences, or materials science.
From forensics and security to pharmaceuticals and environmental applications, spectroscopic detection is one of the most cost-effective methods for identifying chemical compounds in a wide range of disciplines. For spectroscopic information, correlation charts are far more easily used than tables, especially for scientists and students whose own areas of specialization may lie elsewhere. The CRC Handbook of Fundamental Spectroscopic Correlation Charts provides a collection of spectroscopic information and unique correlation charts for use in the interpretation of spectroscopic measurements. The handbook presents useful analysis and assignment of spectra and structural elucidation of organic and organometallic molecules. The correlation charts are compiled from an extensive search of spectroscopic literature and contain current, detailed information that includes new results for many compounds. The handbook includes graphical data charts for nuclear magnetic resonance spectroscopy of the most useful nuclei, as well as infrared and ultraviolet spectrophotometry. Because mass spectrometry data is not best represented graphically, the data are presented in tabular form, where mass spectrometry can be used for analyses and structural determinations in tandem with other techniques. In addition to presenting absorption bands and intensities for a variety of important functional groups and chemical families, the book also discusses instrument calibration, diagnostics, common solvents, fragmentation patterns, several practical conversion tables, and laboratory safety. Not intended to replace reference works that provide exhaustive spectral charts on specific compound classes, this book fills the need for fundamental charts that are needed on a general, day-to-day basis. The CRC Handbook of Fundamental Spectroscopic Correlation Charts is an ideal laboratory companion for students and professionals in academic, industrial, and government labs.
Modern ESCA: The Principles and Practice of X-Ray Photoelectron Spectroscopy is a unique text/reference that focuses on the branch of electron spectroscopy generally labeled as either Electron Spectroscopy for Chemical Analysis (ESCA) or X-ray Photoelectron Spectroscopy (XPS). The book emphasizes the use of core level and valence band binding energies, their shifts, and line widths. It describes the background, present status, and possible future uses of a number of recently developed branches of ESCA, including:
This volume provides an overview of the applications of modern solid-state nuclear magnetic resonance (NMR) techniques to the study of catalysts, catalytic processes, species adsorbed on catalysts and systems relevant to heterogeneous catalysis. It characterizes the structure of catalytic materials and surfaces.
This work provides a clear presentation of the chromatographic process - demonstrating the functions of all associated instrumentation and the procedures necessary to obtain accurate qualitative and quantitative results. The work supplies a host of applications from a variety of sources to help identify the best equipment, the most appropriate columns and the most suitable phase systems for specific samples.
Presents chemical state imaging methods useful on distance scales ranging from individual atoms to millimeters. This work is intended for chemists familiar with modern spectroscopies, but includes tutorial material on basic imaging processes for those with little background in the field.
Both the early use of artificial lighting and current manufacturing methods concerning incandescent and fluorescent lamps are covered in this book. The protocols for manufacture of fluorescent lamp phosphors and those used in cathode ray tubes are also treated in some detail. This text surveys the amazing, vast array of artificial lighting devices known to date in terms of how they arose and are, or have been used by mankind. A complete description of the formulations and methodology for manufacturing all known phosphors is given. The book will serve as a repository of such phosphor manufacturing methods, including that of cathode ray tube phosphors. Methods of manufacture of lamp parts are also presented, including that of tungsten wire. The original approaches used are described as well as improvements in technology. These will serve as comparative methods for present day manufacture of these components. A history of the lamp industry is presented. Several methods are given which may serve as a source for further work in the lamp industry. Some of the earliest work has been applied in the laser industry to develop new types of discharge lasers. These include nitrogen-gas lasers and the rare gas (excimer) lasers. Previous work on lamps may also be applied in the development of new types of lasers.
This book addresses Furnace Atomic Absorption Spectroscopy (FAAS), which has gained worldwide acceptance as an analytical technique. FAAS offers 100-1000 times better determination and detection limits than other techniques for a majority of the elements. This technique requires a small sample size, and demands less sample-preparation time than others. The handbook is a collection of thousands of references for detection and determination of various elements in agricultural products, biological and clinical samples, and metallurgical and electronic materials. Each chapter is devoted to an element or a similar group of elements. Included are instrumental setup parameters, references, and author and subject indexes. Also presented are detailed appendixes covering glossary, list of manufacturers of spectrophotometers and its accessories, list of chemical suppliers, and list of reviews and abstracts. The handbook covers topics such as heavy metals, clinical products, and trace metal analysis. This desk-top reference is meant for chemists who handle day-to-day analysis problems in laboratories in government, clinical, industrial and academic settings. It is invaluable for those involved in research in environmental science, analytical chemistry, clinical chemistry and forensic science.
This book provides an overview of the state of the art in pharmaceutical applications of UV-VIS spectroscopy. This book presents the fundamentals for the beginner and, for the expert, discusses both qualitative and quantitative analysis problems. Several chapters focus on the determination of drugs in various matrices, the coupling of chromatographic and spectrophotometric methods, and the problems associated with the use of chemical reactions prior to spectrophotometric measurements. The final chapter provides a survey of the spectrophotometric determination of the main families of drugs, emphasizing the achievements of the last decade.
Written by experts on current innovations in their fields, this 33rd volume of Advances in Chromatography covers subjects such as planar chips technology, molecular biochromatography, fusion reaction chromatography and enantioselective liquid chromatographic separations.
Keeping mathematics to a minimum, this book introduces nuclear properties, nuclear screening, chemical shift, spin-spin coupling, and relaxation. It is one of the few books that provides the student with the physical background to NMR spectroscopy from the point of view of the whole of the periodic table rather than concentrating on the narrow applications of 1H and 13C NMR spectroscopy. Aids to structure determination, such as decoupling, the nuclear Overhauser effect, INEPT, DEPT, and special editing, and two dimensional NMR spectroscopy are discussed in detail with examples, including the complete assignment of the 1H and 13C NMR spectra of D-amygdain. The authors examine the requirements of a modern spectrometer and the effects of pulses and discuss the effects of dynamic processes as a function of temperature or pressure on NMR spectra. The book concludes with chapters on some of the applications of NMR spectroscopy to medical and non-medical imaging techniques and solid state chemistry of both I = F1/2 and I > F1/2 nuclei. Examples and problems, mainly from the recent inorganic/organometallic chemistry literature support the text throughout. Brief answers to all the problems are provided in the text with full answers at the end of the book.
This quick-reference guide contains over 400 Fourier-transform infrared (FTIR) spectra of commonly used pesticides and related metabolites. Systematically arranged for easy referral, the book: supplies relevant chemical, physical and structural data, in addition to the spectra; compares the improved quality of spectra performed on Fourier transform instruments, in terms of signal-to-noise ratio and optical resolution, to those recorded on dispersive spectrometers; and promotes Good Laborotory Practices (GLP) and Good Manufacturing Practices (GMP) by applying infrared spectroscopy to identify control of standards prior to performing qualitative and quantitative analyses.
The only comprehensive guide to CIMS applications in structural elucidation and analytical studies
Offers coverage of internal reflection spectroscopy (IRS) and its applications to polymer, semiconductor, biological, electrochemical and membrane research. This work describes the theory and procedures and identifies the spectral regions, from materials characterization to process monitoring.
This book provides a detailed description of technical elements of a microbore column liquid chromatograph suitable for use in trace analysis. It presents examples of analyses, especially from the spheres of biochemistry, pharmacology, and environmental analytical chemistry.
Photon-in-photon-out core level spectroscopy is an emerging approach to characterize the electronic structure of catalysts and enzymes, and it is either installed or planned for intense synchrotron beam lines and X-ray free electron lasers. This type of spectroscopy requires high-energy resolution spectroscopy not only for the incoming X-ray beam but also, in most applications, for the detection of the outgoing photons. Thus, the use of high-resolution X-ray crystal spectrometers whose resolving power E/E is typically about 10-4, is mandatory. High-Resolution XAS/XES: Analyzing Electronic Structures of Catalysts covers the latest developments in X-ray light sources, detectors, crystal spectrometers, and photon-in-photon-out core level spectroscopy techniques. It also addresses photon-in-photon-out core level spectroscopy applications for the study of catalytic systems, highlighting hard X-ray measurements primarily due to probe high penetration, enabling in situ studies. This first-of-its-kind book: Discusses high-resolution X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) in terms of time-resolved and surface enhancement Supplies an understanding of catalytic reactivity essential for capitalizing on core level X-ray spectroscopy at fourth-generation light sources (XFELs) Describes all spectrometers developed to perform core level X-ray spectroscopy, considering the advantages and disadvantages of each Details methods to elucidate aspects of catalysts under working conditions, such as active sites and molecule adsorption Introduces theoretical calculations of spectra and explores biological as well as heterogeneous catalysts Complete with guidelines and warnings for the use of this type of spectroscopy, High-Resolution XAS/XES: Analyzing Electronic Structures of Catalysts provides a comprehensive overview of the current state of this exciting field.
Considers three fundamental aspects of molecular interactions important in chromatography, taking care not to duplicate information readily available in other references. Surveys the basic factors involved in complex formation, which governs the retention mechanism and selectivity in either donor or
Characterizing bulk organic matter in seawater and bay water by various analytical techniques and linking these measurements with fouling in membrane systems. Furthermore, it aimed for the development of the Modified Fouling Index - ultrafiltration (MFI-UF) at constant flux filtration as an accurate test to measure the particulate fouling potential of a feed water and predict the rate of fouling in reverse osmosis systems. A new semi-portable set-up has been successfully developed to perform MFI-UF tests at constant flux filtration. A significant effect of the filtration flux on the fouling potential was found. Consequences of this effect for reverse osmosis systems are that the fouling potential at low flux drops dramatically; for ultrafiltration systems it implicates that the rate of fouling increases at high fluxes. The observed effect of flux on the fouling potential has significant implications for fouling potential measurements. Deposition factors in RO systems varied between 0 and 1, depending on location and MFI pore size, which indicates differences in properties of the particles present. Fouling potential results in RO fouling rates of 0.2-1 bar/month depending on the pore size of the membranes used for MFI measurements. The fouling potential of the analysed raw waters is substantially reduced by conventional pre-treatment systems and ultrafiltration: for conventional pre-treatment 37 % - 74 % and ultrafiltration 60 % - 95 %, depending on the location and the MFI pore size. |
You may like...
A Drink with Shane MacGowan
Victoria Mary Clarke, Shane MacGowan
Paperback
R455
Discovery Miles 4 550
The Testimony of St. John - A newly…
Restoration Scriptures Foundation
Hardcover
R493
Discovery Miles 4 930
|