Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This book is devoted to the synthetic and physical chemistry of aromatic thiols and their closest derivatives, sulfides, sulfoxides, sulfones, including those substituted by various functional groups such as acyl and thioacyl, alkoxide, ester, hydroxyl and halogens. In some cases, for comparison, selenium and oxygen analogues are also detailed. The main focus of the book is on synthetic methods, both traditional and new, based on the use of transition metals as catalysts, as well as the reactivity of the compounds obtained. Its addition to the influence of conformational and electronic factors on spectral (NMR, IR, UV, NQR) and electrochemical characteristics of the compounds is presented. Finally, the book describes the application of aromatic thiols and their derivatives as drug precursors, high-tech materials, building blocks for organic synthesis, analytical reagents and additives for oils and fuels. It is a useful handbook for all those interested in organosulfur chemistry.
This volume of the CRM Conference Series is based on a carefully refereed selection of contributions presented at the "11th International Symposium on Quantum Theory and Symmetries", held in Montreal, Canada from July 1-5, 2019. The main objective of the meeting was to share and make accessible new research and recent results in several branches of Theoretical and Mathematical Physics, including Algebraic Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability, Non-perturbative Quantum Field Theory, Particle Physics, Quantum Computing and Quantum Information Theory, and String/ADS-CFT. There was also a special session in honour of Decio Levi. The volume is divided into sections corresponding to the sessions held during the symposium, allowing the reader to appreciate both the homogeneity and the diversity of mathematical tools that have been applied in these subject areas. Several of the plenary speakers, who are internationally recognized experts in their fields, have contributed reviews of the main topics to complement the original contributions.
Research and development in the field of hyphenated techniques has been growing rapidly in the last few years, as indicated by the growing number of conferences on the subject and also the huge number of papers published on techniques such as LC-GC (Liquid Chromatography-Gas Chromatography). Multidimensional techniques - the combination of 2 separation techniques - is an important subsection of hyphenation technologies and up to now there has been no book covering all multidimensional techniques. This monograph, edited by pioneers in the field, is the first book to review all multidimensional techniques including LC-GC, GC-GC and GC-Supercritical Fluid Chromatography. Part 1 describes the numerous combinations of techniques with much practical advice for the beginner as well as for experienced practitioners, while Part 2 details the many and varied applications in areas as diverse as polymer separations and environmental analysis. Multidimensional Chromatography will be an invaluable resource for technicians, engineers and research scientists across a wide range of disciplines, both in industrial and academic laboratories. It is also a suitable text for graduate courses. The nature of the material means it can find a place in any analytical laboratory and scientific library.
This detailed volume covers conventional MS-based "shotgun lipidomics" by which samples are introduced by infusion or loop injection, as well as LC-MS-based lipidomics, which are becoming increasingly important due to the ever-increasing demand for a complete and precise lipid analysis of the complex and diversified lipids in nature. The volume features protocols applying chemical reactions, the on-line photochemical reactions combined with various MS methods for comprehensive characterization of various lipid classes, and quantification of specific and rare lipids. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Mass Spectrometry-Based Lipidomics: Methods and Protocols serves as an invaluable guide for biochemists and mass spectroscopists who are interested in lipid studies.
Used primarily for characterizing polymers and biological systems, vibrational spectroscopy continues to uncover structural information pertinent to a growing number of applications. Vibrational Spectroscopy of Biological and Polymeric Materials compiles the latest developments in advanced infrared and Raman spectroscopic techniques that are applicable to both polymeric materials and biological compounds. It also presents instrumentation and experimental details that can be used by polymer chemists and biochemists in the design of their own experiments. The text starts by describing the application of static and dynamic FT-IR spectroscopies to liquid crystalline polyurethanes, including a clear exposition of the theory behind the experiments. It discusses the measurement of static and dynamic linear dichroism and stress or strain in both single and multiple fiber composite materials. The book explains the roles of vibrational spectroscopy and the Langmuir-Blodgett technique in the study and preparation of high-quality ultrathin materials. Chapters rich in both theoretical and experimental details describe two-dimensional correlation spectroscopy and vibrational circular dichroism. Biomedically-oriented chapters describe the advances in IR imaging of tissues made possible by focal-plane arrays; as well as the use of ligand-gated FT-IR difference spectroscopy in neuropharmacology, particularly in identifying ligands and modes of action for the large number of membrane receptors recently identified in the human genome. The final chapter discusses the application of time-resolved FT-IR spectroscopy to biological materials, providing a detailed guide to the use of commercial step-scan instrumentation for examining sub-millisecond mechanistic details of photobiological processes. Written by eminent experts in these fields, Vibrational Spectroscopy of Biological and Polymeric Materials is an ideal and practical reference for the broad spectrum of researchers interested in the analysis and integration of biological and polymeric materials.
This book provides easy-to-understand explanations to systematically and comprehensively describe the X-ray CT technologies, techniques, and skills used for industrial and scientific purposes. Included are many references along with photographs, figures, and equations prepared by the author. These features all facilitate the reader's gaining a deeper understanding of the topics being discussed. The book presents expertise not only on fundamentals but also about hardware, software, and analytical methods for the benefit of technical users. The book targets engineers, researchers, and students who are involved in research, development, design, and quality assurance in industry and academia.
This book offers selected contributions to fundamental research and application in designing and engineering materials. It focuses on mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. This includes a wide range of material classes, like lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing using the new or newer materials, testing methods, and multi-scale experimental and computational aspects.
This book highlights emerging trends in terahertz engineering and system technologies, mainly, devices, advanced materials, and various applications in THz technology. It includes advanced topics such as terahertz biomedical imaging, pattern recognition and tomographic reconstruction for THz biomedical imaging by use of machine learning and artificial intelligence, THz imaging radars for autonomous vehicle applications, THZ imaging system for security and surveillance. It also discusses theoretical, experimental, established and validated empirical work on these topics and the intended audience is both academic and professional.
This work studies the relaxation dynamics of molecules in both the gas and liquid phases after strong field ionization, using transient absorption in the soft X-rays. In particular, the thesis presents the first realization of time-resolved X-ray absorption spectroscopy in the spectral water window with a laser-based HHG source. These remarkable experiments were not only performed for isolated molecules, but also in liquids, for which the spectral coverage of the K-edges of C, N, and O are of primary importance for investigating biological molecules. The technique relies on the generation of high-order harmonics to further probe the electronic structure of molecules. Using the atomic selectivity of high energies and the temporal coherence of laser technology, we demonstrate the observation of the first stages of chemical transformation of matter in the gas and liquid phases.
Annual Reports on NMR Spectroscopy, Volume 106 highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors.
This thesis reports advances in terahertz time-domain spectroscopy, relating to the development of new techniques and components that enhance the experimentalist's control over the terahertz polarisation state produced by photoconductive emitters. It describes how utilising the dynamic magnetoelectric response at THz frequencies, in the form of electromagnons, can probe material properties at a transition between two magnetically ordered phases. Additionally, preliminary investigations into the properties of materials exposed to extreme terahertz optical electric fields are reported. The work presented in this thesis may have immediate impacts on the study of anisotropic media at THz frequencies, with photoconductive emitters and detectors being the most commonly used components for commercially available terahertz spectroscopy and imaging systems, and by providing a new way to study the nature of magnetic phase transitions in multiferroics. In the longer term the increased understanding of multiferroics yielded by ultrafast spectroscopic methods, including terahertz time-domain spectroscopy, may help develop new magnetoelectric and multiferroic materials for applications such as spintronics.
This book discusses the scientific mechanism of copper electrodeposition and it's wide range of applications. The book will cover everything from the basic fundamentals to practical applications. In addition, the book will also cover important topics such as: * ULSI wiring material based upon copper nanowiring * Printed circuit boards * Stacked semiconductors * Through Silicon Via * Smooth copper foil for Lithium-Ion battery electrodes. This book is ideal for nanotechnologists, industry professionals, and practitioners.
This monograph contains a survey on the role of chirality in ecotoxicological processes. The focus is on environmental trace analysis. Areas such as toxicology, ecotoxicology, synthetic chemistry, biology, and physics are also covered in detail in order to explain the different properties of enantiomers in environmental samples. This monograph delivers a comprehensive survey for environmental trace analysts, analytical chemists, ecotoxicologists, food scientists and experienced lab workers.
The renowned Oxford Chemistry Primer series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. The learning features provided, including questions at the end of every chapter and online multiple-choice questions, encourage active learning and promote understanding. Moreover, cutting-edge examples and applications throughout the texts show the relevance to current research and industry of the chemistry being described. Electronic Paramagnetic Resonance provides a user-friendly introduction to this powerful tool for characterizing paramagnetic molecules. A versatile technique, EPR is becoming increasingly used across fields as diverse as biology, materials science, chemistry, and physics. This primer provides the perfect introduction to the subject by taking the reader through from basic principles to how spectra can be interpreted in practice, with frequent examples demonstrating the diverse ways in which the technique can be applied. Online Resource Centre The Online Resource Centre to accompany Electron Paramagnetic Resonance features: For registered adopters of the text: * Figures from the book available to download For students: * Full worked solutions to the end-of-chapter exercises * Multiple-choice questions for self-directed learning
This book presents an overview of the latest Moessbauer spectroscopy research. It sheds light on various cutting-edge research subjects: (i) nuclear resonance scattering experiments implemented at synchrotron radiation facilities, e.g., ESRF, DESY and Spring-8; (ii) multidisciplinary materials research related to chemistry, biology, geoscience, molecular magnetism of metal complexes, batteries, and magnetism; (iii) novel imaging techniques based on probing diffusion in solids using Moessbauer spectroscopy. The first three chapters introduce recent research on modern Moessbauer spectroscopy, including nuclear resonant scattering experiments and development of related techniques at synchrotron accelerator facilities. Chapters 4 and 5 then demonstrate the applications of such pioneering techniques to chemistry, biology and geoscience. Chapters 6 and 7 describe the applications to new functional materials, i.e., metal complexes and Li- and Na-ion batteries, while the final two chapters are devoted to two important measuring techniques: Moessbauer spectroscopy under external magnetic fields, and microscopic Moessbauer techniques on diffusion in solids, which are expected to play an essential role in the investigation and characterization of magnetic structures and microstructures in materials. The cutting-edge content provides readers with quick updates on the latest research topics in the field, while the tutorial-style descriptions allow readers unfamiliar with Moessbauer spectroscopy to learn and implement the techniques. As such, the book is especially useful for advanced undergraduate and early graduate students who have recently been assigned to a laboratory.
Angelo Secchi was a key figure in 19th century science. An Italian Jesuit and scientist, he helped lead the transition from astronomy to astrophysics and left a lasting legacy in the field. Secchi's spectral classification of stars was a milestone that paved the way for modern astronomical research. He was also a founder of modern meteorology and an innovator in the design and development of new instruments and methods across disciplines.This contributed volume collects together reviews from an international group of historians, scientists and scholars representing the multiple disciplines where Secchi made significant contributions during his remarkable career. It analyzes both his famous and lesser known pioneering efforts with equal vigor, providing a well-rounded narrative of his life's work. Beyond his scientific and technological work, his role as a Jesuit priest in Rome during the turbulent years of the mid 19th century is also described and placed in the context of his scientific and civic activities.
UV-Visible Spectrophotometry of Waters and Soils, Third Edition presents the latest information on the use of UV spectrophotometry for environmental quality monitoring. Using practical examples, the book illustrates how this technique can be a source of new methods of characterization and measurement. Easy and fast to run, this simple and robust analytical technique is one of the best ways to obtain a quantitative estimation of specific or aggregate parameters (e.g., Nitrate, TOC) and simultaneously qualitative information on the global composition of waters and soils. This third edition presents current methods and applications for water quality monitoring, including recent works and developments. Writing from years of experience in the development and applications of UV systems and from scientific and technical works, the book's authors provide several useful examples that show the great interest of UV spectrophotometry for water and soil monitoring. At the end of the book, the UV spectra library of previous editions is updated with new chemicals of interest.
This reference examines innovations in separation science for
improved sensitivity and cost-efficiency, increased speed, higher
sample throughput and lower solvent consumption in the assessment,
evaluation, and validation of emerging drug compounds. It
investigates breakthroughs in sample pretreatment, HPLC, mass
spectrometry, capillary electrophoresis and therapeutic drug
monitoring for improved productivity, precision, and safety in
clinical chemistry, biomedical analysis, and forensic
research.
This handbook is one of three containing an invaluable collection
of research grade XPS spectra. Each handbook concentrates on a
specific family of materials (the elements and their native oxides,
semiconductors, and polymers) and is entirely self-contained. The
introductory section to each handbook includes comprehensive
information about the XPS instruments used, the materials, and the
advanced methods of collecting the spectra. Energy resolution
settings, instrument characteristics, energy referencing methods,
traceability, energy scale calibration details and transmission
function are all reported. Among the many valuable features
included in each of these handbooks are:
Magnetic Resonance Imaging (MRI) is one of the most important tools in clinical diagnostics and biomedical research. The number of MRI scanners operating around the world is estimated to be approximately 20,000, and the development of contrast agents, currently used in about a third of the 50 million clinical MRI examinations performed every year, has largely contributed to this significant achievement. This completely revised and extended second edition: " "Includes new chapters on targeted, responsive, PARACEST and nanoparticle MRI contrast agents.Covers the basic chemistries, MR physics and the most important techniques used by chemists in the characterization of MRI agents from every angle from synthesis to safety considerations.Is written for all of those involved in the development and application of contrast agents in MRI.Presented in colour, it provides readers with true representation and easy interpretation of the images. A word from the Authors: "Twelve years after the first edition published, we are convinced that the chemistry of MRI agents has a bright future. By assembling all important information on the design principles and functioning of magnetic resonance imaging probes, this book intends to be a useful tool for both experts and newcomers in the field. We hope that it helps inspire further work in order to create more efficient and specific imaging probes that will allow materializing the dream of seeing even deeper and better inside the living organisms." "Reviews of the First Edition: " ..".attempts, for the first time, to review the whole spectrum of involved chemical disciplines in this technique..."--Journal of the American Chemical Society..".well balanced in its scope and attention to detail...a valuable addition to the library of MR scientists..."--NMR in Biomedicine
This book presents a theoretical study of the generation and conversion of phonon angular momentum in crystals. Recently, rotational motions of lattice vibrations, i.e., phonons, in crystals attract considerable attentions. As such, the book theoretically demonstrate generations of phonons with rotational motions, based on model calculations and first-principle calculations. In systems without inversion symmetry, the phonon angular momentum is shown to be caused by the temperature gradient, which is demonstrated in crystals such as wurtzite gallium nitride, tellurium, and selenium using the first-principle calculations. In systems with neither time-reversal nor inversion symmetries, the phonon angular momentum is shown to be generated by an electric field. Secondly, the book presents the microscopic mechanisms developed by the author and his collaborator on how these microscopic rotations of nuclei are coupled with electron spins. These predictions serve as building blocks for spintronics with phonons or mechanical motions.
This book presents a detailed look at experimental and computational techniques for accurate structure determination of free molecules. The most fundamental property of a molecule is its structure - it is a prerequisite for determining and understanding most other important properties of molecules. The determination of accurate structures is hampered by a myriad of factors, subjecting the collected data to non-negligible systematic errors. This book explains the origin of these errors and how to mitigate and even avoid them altogether. It features a detailed comparison of the different experimental and computation methods, explaining their interplay and the advantages of their combined use. Armed with this information, the reader will be able to choose the appropriate methods to determine - to a great degree of accuracy - the relevant molecular structure. |
You may like...
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,238
Discovery Miles 52 380
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R5,426
Discovery Miles 54 260
Micro-Raman Spectroscopy - Theory and…
Jurgen Popp, Thomas Mayerhoefer
Hardcover
R3,497
Discovery Miles 34 970
Mass Spectrometry in Biopharmaceutical…
Igor A. Kaltashov, Shunhai Wang, …
Hardcover
R2,763
Discovery Miles 27 630
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,216
Discovery Miles 32 160
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R4,782
Discovery Miles 47 820
Analytical Atomic Absorption…
Alfredo Sanz-Medel, Rosario Pereiro
Hardcover
R1,501
Discovery Miles 15 010
|