![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
Applications of Time-of-Flight and Orbitrap Mass Spectrometry in Environmental, Food, Doping, and Forensic Analysis deals with the use of high-resolution mass spectrometry (MS) in the analysis of small organic molecules. Over the past few years, time-of-flight (ToF) and Orbitrap MS have both experienced tremendous growth in a great number of analytical sectors and are now well established in many laboratories where high requirements are placed on analytical performance. This book gives a head-to-head comparison of these two technologies that compete directly with each other. As users with hands-on experience in both techniques, the authors provide a balanced description of the strengths and weaknesses of both techniques. In the vast majority of cases, ToF-MS and Orbitrap-MS have been used for qualitative purposes, mainly identification of discrete molecular entities such as drug metabolites or transformation products of environmental contaminants. This paradigm is now changing as quantitative capabilities are increasingly being explored, as are non-target approaches for unbiased broad-scope screening. In view of the continuous innovation of high-resolution MS instrument manufacturers in designing and developing more powerful machines, technological advances in both hardware and software are considerable, with many novel applications. This book summarizes and analyzes these trends. The compilation of selected examples from diverse analytical fields will allow the readers to discover not only the potential of high-resolution MS in their sector, but also shows advances in other fields that rely on hi-res MS.
NMR spectroscopy has found a wide range of applications in life sciences over recent decades. Providing a comprehensive amalgamation of the scattered knowledge of how to apply high-resolution NMR techniques to biomolecular systems, this book will break down the conventional stereotypes in the use of NMR for structural studies. The major focus is on novel approaches in NMR which deal with the functional interface of either protein-protein interactions or protein-lipid interactions. Bridging the gaps between structural and functional studies, the Editors believe a thorough compilation of these studies will open an entirely new dimension of understanding of crucial functional motifs. This in turn will be helpful for future applications into drug design or better understanding of systems. The book will appeal to NMR practitioners in industry and academia who are looking for a comprehensive understanding of the possibilities of applying high-resolution NMR spectroscopic techniques in probing biomolecular interactions.
This book discusses fragmentation mechanisms of molecules under mass spectrometry conditions and the resulting peaks observed in ESI-MS/MS experiments. The underlying principles are used to understand everything from small molecules to biological poly-peptides collision induced dissociation. In a theoretical approach, gas phase reactivity of molecular ions is coupled with chemical dynamics simulations.
Here, the authors introduce readers to solving molecular structure elucidation problems using the expert system ACD/Structure Elucidator. They explain in detail the concepts of the Computer-Assisted Structure Elucidation (CASE) approach and point out the crucial role of understanding the axiomatic nature of the data used to deduce the structure. Aspects covered include the main blocks of the expert system and essential features of the mathematical algorithms used. Graduate and PhD students as well as practicing chemists are provided with a detailed explanation of the various practical approaches depending on available spectral data peculiarities and the complexity of the unknown structure. This is supported by a large number of real-world completed examples, most of which are related to the structure elucidation of natural product molecules containing unusual skeletons. Dedicated software and further supplementary material are available at www.acdlabs.com/TeachingSE.
The quality and safety of food are crucial for human nutrition. However, evaluating the chemical composition of food is challenging for the analyst and requires powerful methods. Chromatography and mass spectrometry (MS) is the gold standard for analyzing complex food samples, including raw materials and intermediate and finished products. Mass Spectrometry in Food Analysis covers the MS-based analysis of different aspects of food quality, which include nutritional value, profile of macronutrients (proteins, lipids, and carbohydrates), micronutrients (vitamins), and nutraceutical active compounds. Additionally, sensory quality, flavor, food pigments, safety, and detection of pesticides, contact materials, veterinary drugs and pharmaceuticals, organic pollutants, and pathogens are covered. Key Features: Contains the basics of mass spectrometry and experimental strategies Explores determination of macro- and micronutrients Analyzes sensory and nutraceutical food quality Discusses detection of contaminants and proof of authenticity Presents emerging methods for food analysis This book contains an introductory section that explains the basics of MS and the difference between targeted and untargeted strategies for beginners. Further, it points out new analytical challenges, such as monitoring contaminants of emerging concern, and presents innovative techniques (e.g., ambient ionization MS and data mining). Also available in the Food Analysis & Properties Series: Nanoemulsions in Food Technology: Development, Characterization, and Applications, edited by Javed Ahmad and Leo M.L. Nollet (ISBN: 978-0-367-61492-8) Sequencing Technologies in Microbial Food Safety and Quality, edited by Devarajan Thangadurai, Leo M.L. Nollet, Saher Islam, and Jeyabalan Sangeetha (ISBN: 978-0-367-35118-2) Chiral Organic Pollutants: Monitoring and Characterization in Food and the Environment, edited by Edmond Sanganyado, Basil K. Munjanja, and Leo M.L. Nollet (ISBN: 978-0-367-42923-2) For a complete list of books in this series, please visit our website at: www.crcpress.com/Food-Analysis--Properties/book-series/CRCFOODANPRO
Prompt gamma activation analysis (PGAA) is a unique, non-destructive nuclear analytical method with multi-element capabilities. It is most effective if intense neutron beams (especially cold beams) of nuclear reactors are used to induce the prompt gamma radiation. Based largely on the authors' pioneering research in cold neutron PGAA, the handbook describes the methodology in self-contained manner and reviews recent applications. The library of prompt gamma ray data and spectra for all natural elements, also provided on a CD-ROM supplement, is a unique aid to the practitioner. The level is understandable by a broad audience, which facilitates teaching and training. The Handbook of Prompt Gamma Activation Analysis is a comprehensive handbook written for those practising the method, wanting to implement it at a reactor facility, or just looking for a powerful non-destructive method of element analysis. The book is also useful for nuclear physics, chemistry and engineering scientists, scholars and graduate students interested in neutron-induced gamma ray spectroscopy and nuclear analytical methods.
This book offers a compact overview on crystallography, symmetry, and applications of symmetry concepts. The author explains the theory behind scattering and diffraction of electromagnetic radiation. X-ray diffraction on single crystals as well as quantitative evaluation of powder patterns are discussed.
Advanced Mass Spectrometry for Food Safety and Quality provides information on recent advancements made in mass spectrometry-based techniques and their applications in food safety and quality, also covering the major challenges associated with implementing these technologies for more effective identification of unknown compounds, food profiling, or candidate biomarker discovery. Recent advances in mass spectrometry technologies have uncovered tremendous opportunities for a range of food-related applications. However, the distinctive characteristics of food, such as the wide range of the different components and their extreme complexity present enormous challenges. This text brings together the most recent data on the topic, providing an important resource towards greater food safety and quality.
The content of this book describes in detail the results of the present measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, beside other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. The incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons (*) X-ray-ion coincidence spectroscopy of the electron xenon atom collisions is also described. The present measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases by electron impact are also described in the text of this book. The results of the measurements for sulfur dioxide molecule show how this major atmospheric pollutant can be removed from the atmosphere by electron impact dissociation of this molecule. The present results of the measurements for sulfur hexa fluoride give an insight into the dissociation properties of this molecular gas, which is being so widely used as a gaseous insulator in the electrical circuits. The book also describes the present measurements of the polarization parameters of the fluorescence radiation emitted by the electron-impact-excited atoms of sodium and potassium. In these investigations the target atoms are polarized, therefore, the measurements of the polarization parameters give information about the electron atom interaction in terms of the interference, direct and exchange interaction channels.
"Introduction to Thin Film Transistors" reviews the operation, application and technology of the main classes of thin film transistor (TFT) of current interest for large area electronics. The TFT materials covered include hydrogenated amorphous silicon (a-Si: H), poly-crystalline silicon (poly-Si), transparent amorphous oxide semiconductors (AOS), and organic semiconductors. The large scale manufacturing of a-Si: H TFTs forms the basis of theactive matrix flat panel display industry. Poly-Si TFTs facilitate the integration of electronic circuits into portable active matrix liquid crystal displays, and are increasingly used in active matrix organic light emitting diode (AMOLED) displays for smart phones. The recently developed AOS TFTs are seen as an alternative option to poly-Si and a-Si: H for AMOLED TV and large AMLCD TV applications, respectively. The organic TFTs are regarded as a cost effective route into flexible electronics. As well as treating the highly divergent preparation and properties of these materials, the physics of the devices fabricated from them is also covered, with emphasis on performance features such as carrier mobility limitations, leakage currents and instability mechanisms. The thin film transistors implemented with these materials are the conventional, insulated gate field effect transistors, and a further chapter describes a new thin film transistor structure: the source gated transistor, SGT. The driving force behind much of the development of TFTs has been their application to AMLCDs, and there is a chapter dealing with the operation of these displays, as well as of AMOLED and electrophoretic displays. A discussion of TFT and pixel layout issues is also included. For students and new-comers to the field, introductory chapters deal with basic semiconductor surface physics, and with classical MOSFET operation. These topics are handled analytically, so that the underlying device physics is clearly revealed. These treatments are then used as a reference point, from which the impact of additional band-gap states on TFT behaviour can be readily appreciated. This reference book, covering all the major TFT technologies, will be of interest to a wide range of scientists and engineers in the large area electronics industry. It will also be a broad introduction for research students and other scientists entering the field, as well as providing an accessible and comprehensive overview for undergraduate and postgraduate teaching programmes. "
Lifetime spectroscopy is one of the most sensitive diagnostic tools for the identification and analysis of impurities in semiconductors. Since it is based on the recombination process, it provides insight into precisely those defects that are relevant to semiconductor devices such as solar cells. This book introduces a transparent modeling procedure that allows a detailed theoretical evaluation of the spectroscopic potential of the different lifetime spectroscopic techniques. The various theoretical predictions are verified experimentally with the context of a comprehensive study on different metal impurities. The quality and consistency of the spectroscopic results, as explained here, confirms the excellent performance of lifetime spectroscopy.
This text is aimed at people who have some familiarity with high-resolution NMR and who wish to deepen their understanding of how NMR experiments actually 'work'. This revised and updated edition takes the same approach as the highly-acclaimed first edition. The text concentrates on the description of commonly-used experiments and explains in detail the theory behind how such experiments work. The quantum mechanical tools needed to analyse pulse sequences are introduced set by step, but the approach is relatively informal with the emphasis on obtaining a good understanding of how the experiments actually work. The use of two-colour printing and a new larger format improves the readability of the text. In addition, a number of new topics have been introduced: How product operators can be extended to describe experiments in AX2 and AX3 spin systems, thus making it possible to discuss the important APT, INEPT and DEPT experiments often used in carbon-13 NMR.Spin system analysis i.e. how shifts and couplings can be extracted from strongly-coupled (second-order) spectra.How the presence of chemically equivalent spins leads to spectral features which are somewhat unusual and possibly misleading, even at high magnetic fields.A discussion of chemical exchange effects has been introduced in order to help with the explanation of transverse relaxation.The double-quantum spectroscopy of a three-spin system is now considered in more detail. Reviews of the First Edition "For anyone wishing to know what really goes on in their NMR experiments, I would highly recommend this book" - "Chemistry World" ..".I warmly recommend for budding NMR spectroscopists, or others who wish to deepen their understanding of elementary NMR theory or theoretical tools" - "Magnetic Resonance in Chemistry"
This book covers the fundamental aspects and the application of electrochemical impedance spectroscopy (EIS), with emphasis on a step-by-step procedure for mechanistic analysis of data. It enables the reader to learn the EIS technique, correctly acquire data from a system of interest, and effectively interpret the same. Detailed illustrations of how to validate the impedance spectra, use equivalent circuit analysis, and identify the reaction mechanism from the impedance spectra are given, supported by derivations and examples. MATLAB (R) programs for generating EIS data under various conditions are provided along with free online video lectures to enable easier learning. Features: Covers experimental details and nuances, data validation method, and two types of analysis - using circuit analogy and mechanistic analysis Details observations such as inductive loops and negative resistances Includes a dedicated chapter on an emerging technique (Nonlinear EIS), including code in the supplementary material illustrating simulations Discusses diffusion, constant phase element, porous electrodes, and films Contains exercise problems, MATLAB codes, PPT slide, and illustrative examples This book is aimed at senior undergraduates and advanced graduates in chemical engineering, analytical chemistry, electrochemistry, and spectroscopy.
When considering the biological significance and industrial and medical applications of biopolymers, it is crucial to know details of their secondary structure, dynamics and assembly. The biopolymers include globular, membrane and fibrous proteins, polypeptides, nucleic acids, polysaccharides and lipids. Solid state NMR spectroscopy has proved to be the most suitable and unrivaled means for investigations of biopolymers. The major advantage of solid state NMR spectroscopy is that the resulting line widths can be manipulated experimentally and are not influenced by motional fluctuation of proteins under consideration as a whole. Solid State NMR Spectroscopy for Biopolymers: Principles and Applications provides a comprehensive account on how the conformation and dynamics of such biopolymers can be revealed by solid state NMR spectroscopy. Special efforts have been made towards the historical and chronological consequences of a variety of applications and the dynamic aspects of the biopolymer system. In particular, the authors emphasise how important it is to record the most simple DD-MAS (one pulse excitation with high power decoupling) as a mean of locating very flexible portions of membrane proteins and membrane associated peptides. The authors also demonstrate that dynamic features of membrane proteins with a timescale of fast (108 Hz) and intermediate (104 -105 Hz) fluctuation motions can be revealed easily by specific suppression of peaks.
An Introduction to Analytical Atomic Spectrometry is a thoroughly revised and updated version of the highly successful book by Les Ebdon, An Introduction to Atomic Absorption Spectroscopy. The change in title reflects the number of significant developments in the field of atomic spectrometry since publication of the earlier book. New topics include plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Key features:
The history of the application of semiconductors for controlling currents goes back all the way to 1926, in which Julius Lilienfeld led a patent for a "Method and apparatus for controlling electric currents" [1], which is considered the rst work on metal/semiconductor eld-effect transistors. More well-known is the work of William Shockley, John Bardeen and Walter Brattain in the 1940s [2, 3], after which the development of semiconductor devices commenced. In 1958, independent work from Jack Kilby and Robert Noyce ledto the invention of integrated circuits. A few milestones in IC design are the rst monolithic operational ampli er in 1963 (Fairchild?A702, Bob Widlar) and the rst o- chip 4-bit microprocessor in 1971 (Intel 4004). Ever since the start of the semiconductor history, integration plays an imp- tant role: starting from single devices, ICs with basic functions were developed (e. g. opamps, logic gates), followed by ICs that integrate larger parts of a s- tem (e. g. microprocessors, radio tuners, audio ampli ers). Following this trend of system integration, this eventually leads to the integration of analog and d- ital components in one chip, resulting in mixed-signal ICs: digital components are required because signal processing is preferably done in the digital - main; analog components are required because physical signals are analog by nature. Mixed-signal ICs are already widespread in many applications (e. g. - dio, video); for the future, it is expected that this trend will continue, leading to a larger scale of integration.
This work is based on experiences acquired by the authors regarding often asked questions and problems during manifold education of beginners in analytical transmission electron microscopy. These experiences are summarised illustratively in this textbook. Explanations based on simple models and hints for the practical work are the focal points. This practically- oriented textbook represents a clear and comprehensible introduction for all persons who want to use a transmission electron microscope in practice but who are not specially qualified electron microscopists up to now.
E = mc2 and the Periodic Table . . .
This handbook is a breakthrough in the understanding of the large number of spectral lines in diamond. Data on more than 2000 lines and bands are presented in 200 tables, including many unpublished results. With a novel organization scheme, the search for a specific line is greatly simplified as a benefit for researchers and students. In order to meet the interest in the understanding of the spectra, structure assignments for 80 % of the lines are given, of which 15 % only were published before. The majority of the structures for the 300 centers is explained in most cases for the first time. A key instrument in the interpretation is the analysis by donor-acceptor pair transitions. In a special chapter 95 such centers are listed and discussed, of which only two have been published before, the first one by the present author in 1994.
Gain an understanding of the latest advances in spectroscopy with INTRODUCTION TO SPECTROSCOPY.This proven book provides a systematic introduction to spectra and basic theoretical concepts in spectroscopic methods and includes up-to-date spectra; a modern presentation of one-dimensional nuclear magnetic resonance (NMR) spectroscopy; an introduction to biological molecules in mass spectrometry; and coverage of modern techniques alongside DEPT, COSY, and HECTOR.
Electron paramagnetic resonance (EPR) applications remain highly significant in modern analytical science and this volume compiles critical coverage of developments in the recent literature. The topics covered in this volume describe contrasting types of EPR application, including rapid scan EPR, using the EPR toolkit to investigate the structural dynamics of membrane proteins and pulse dipolar EPR spectroscopy for investigating biomolecular binding events. An additional chapter reviewing the PARACAT collaboration from the EU has also been included. Providing a snapshot of the area by a handpicked group of researchers at the cutting-edge of the field, this book is a useful addition to any library supporting this research.
In addition to the essential theoretical background and fundamental principles, this unique reference presents a detailed, step-by-step methodology for interpreting even electron mass spectrometry results. Specific chapters are devoted to: proteomics; biomolecule spectral interpretation of small molecules; biomolecule spectral interpretation of biological macromolecules; and MALDI-TOF-Postsource Decay (PSD). Chapters feature detailed examples, questions, and problems to help readers solidify their understanding of the concepts and techniques.
The 6th edition of this classic comprises the most comprehensive guide to infrared and Raman spectra of inorganic, organometallic, bioinorganic, and coordination compounds. From fundamental theories of vibrational spectroscopy to applications in a variety of compound types, it is extensively updated. Part B details applications of Raman and IR spectroscopy to larger and complex systems. It covers interactions of cisplatin and other metallodrugs with DNA and cytochrome c oxidase and peroxidase. This is a great reference for chemists and medical professionals working with infrared or Raman spectroscopies and for graduate students. |
You may like...
Noncommutative Iwasawa Main Conjectures…
John Coates, Peter Schneider, …
Hardcover
R5,250
Discovery Miles 52 500
Categorical Decomposition Techniques in…
Gregory Arone, John Hubbuck, …
Paperback
R2,659
Discovery Miles 26 590
Digital Medicine - Health Care in the…
Darrell M West, Edward Alan Miller
Paperback
R799
Discovery Miles 7 990
|