Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
The new edition of the popular introductory analytical chemistry textbook, providing students with a solid foundation in all the major instrumental analysis techniques currently in use The third edition of Chemical Analysis: Modern Instrumentation Methods and Techniques provides an up-to-date overview of the common methods used for qualitative, quantitative, and structural chemical analysis. Assuming no background knowledge in the subject, this student-friendly textbook covers the fundamental principles and practical aspects of more than 20 separation and spectroscopic methods, as well as other important techniques such as elemental analysis, electrochemistry and isotopic labelling methods. Avoiding technical complexity and theoretical depth, clear and accessible chapters explain the basic concepts of each method and its corresponding instrumental techniques--supported by explanatory diagrams, illustrations, and photographs of commercial instruments. The new edition includes revised coverage of recent developments in supercritical fluid chromatography, capillary electrophoresis, miniaturized sensors, automatic analyzers, digitization and computing power, and more. Offering a well-balanced introduction to a wide range of analytical and instrumentation techniques, this textbook: Provides a detailed overview of analysis methods used in the chemical and agri-food industries, medical analysis laboratories, and environmental sciences Covers various separation methods including chromatography, electrophoresis and electrochromatography Describes UV and infrared spectroscopy, fluorimetry and chemiluminescence, x-ray fluorescence, nuclear magnetic resonance and other common spectrometric methods such atomic or flame emission, atomic absorption and mass spectrometry Includes concise overview chapters on the general aspects of chromatography, sample preparation strategies, and basic statistical parameters Features examples, end-of-chapter problems with solutions, and a companion website featuring PowerPoint slides for instructors Chemical Analysis: Modern Instrumentation Methods and Techniques, Third Edition, is the perfect textbook for undergraduates taking introductory courses in instrumental analytical chemistry, students in chemistry, pharmacy, biochemistry, and environmental science programs looking for information on the techniques and instruments available, and industry technicians working with problems of chemical analysis. Review of Second Edition "An essential introduction to a wide range of analytical and instrumentation techniques that have been developed and improved in recent years." --International Journal of Environmental and Analytical Chemistry
This volume is intended to show beginners in modern Fourier Transform-Infrared analysis which technique of infrared analysis should be selected and how to use it to obtain certain information from the most common samples brought into research and analytical laboratories in production industries.
Used routinely in drug control laboratories, forensic laboratories, and as a research tool, thin layer chromatography (TLC) plays an important role in pharmaceutical drug analyses. It requires less complicated or expensive equipment than other techniques, and has the ability to be performed under field conditions. Filling the need for an up-to-date, complete reference, Thin Layer Chromatography in Drug Analysis covers the most important methods in pharmaceutical applications of TLC, namely, analysis of bulk drug material and pharmaceutical formulations, degradation studies, analysis of biological samples, optimization of the separation of drug classes, and lipophilicity estimation. The book is divided into two parts. Part I is devoted to general topics related to TLC in the context of drug analysis, including the chemical basis of TLC, sample pleparation, the optimization of layers and mobile phases, detection and quantification, analysis of ionic compounds, and separation and analysis of chiral substances. The text addresses the newest advances in TLC instrumentation, two-dimensional TLC, quantification by slit scanning densitometry and image analysis, statistical processing of data, and various detection and identification methods. It also describes the use of TLC for solving a key issue in the drug market-the presence of substandard and counterfeit pharmaceutical products. Part II provides an in-depth overview of a wide range of TLC applications for separation and analysis of particular drug groups. Each chapter contains an introduction about the structures and medicinal actions of the described substances and a literature review of their TLC analysis. A useful resource for chromatographers, pharmacists, analytical chemists, students, and R&D, clinical, and forensic laboratories, this book can be utilized as a manual, reference, and teaching source.
The applications of solvent extraction (SX) and liquid membranes (LM) span chemistry, metallurgy, hydrometallurgy, chemical/mineral processing, and waste treatment-making it difficult to find a single resource that encompasses fundamentals as well as advanced applications. Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials draws together a diverse group of internationally recognized experts to highlight key scientific and technological aspects of solvent extraction that are critical to future work in the field. The first chapters identify relevant thermodynamics, kinetics, and interfacial behavior principles and introduce methods for calculating extraction equilibria and kinetic parameters. The next chapters focus on engineering and technological aspects of various industrial processes and plant applications, including optimization and modeling tools and calculations. The final chapters examine new materials for metal extraction and separations, covering preparation and application processes for organic and inorganic sorbents, solid polymeric extractants, and solvent impregnated resins. Solvent Extraction and Liquid Membranes offers a comprehensive review of the most important principles, calculations, and procedures involved in this widely applicable separation technique. The book's pedagogical approach will benefit students and researchers in the field as well as working scientists and engineers who wish to apply solvent extraction to their own applications.
Focusing on what has been one of the driving forces behind the development of lab-on-a-chip devices, Separation Methods in Microanalytical Systems explores the implementation, realization, and operation of separation techniques and related complex workflows on microfabricated devices. The book details the design, manufacture, and integration of diverse components needed to perform an entire analytical procedure on a single miniaturized device. The content applies to a diversity of disciplines including chemical analysis, biomedical diagnostics, environmental monitoring, and drug discovery. Separation Methods in Microanalytical Systems lays its theoretical background in a way that scientists from varied disciplines can approach. The book describes factors that influence the performance of separation, such as microfluidic handling, sample pre-treatment, and detection. It also conveys fabrication and material issues, design challenges, and practical considerations. Several chapters describe specific separation techniques that are central to micro-Total Analysis Systems (-TAS) as well as novel methods and emerging trends in microchip-based separations. The book also provides an applications overview that supplies a wealth of examples that help scientists put their ideas in perspective with already existing solutions. This multi-authored volume offers different styles, approaches, and opinions for a given problem, reflecting the various angles researchers take to handle the same issues. A one-stop guide for understanding, designing, and working with separation techniques in microanalytical devices, Separation Methods in Microanalytical Systems is a valuable reference for scientists and engineers already preparing to meet the anticipated demand for function-specific chemical separation systems.
There is a dramatic rise of novel drug use due to the increased popularity of so-called designer drugs. These synthetic drugs can be illegal in some countries, but legal in others and novel compounds unknown to drug chemistry emerge monthly. This thoughtfully constructed edited reference presents the main chromatographic methodologies and strategies used to discover and analyze novel designer drugs contained in diverse biological materials. The methods are based on molecular characteristics of the drugs belonging to each individual class of compounds, so it will be clear how the current methods are adaptable to future new drugs that appear in the market.
This book provides a balanced blend of fundamental concepts of fabrication, characterization of conventional ceramics, extending to present the recent advances in ceramic membranes. It covers the basic concepts of ceramic membranes as well as practical and theoretical knowledge in conventional and advanced ceramic membranes combined with unorthodox ideas for novel approaches in ceramic membranes. Book includes lot of real time examples derived largely from research work by authors. Aimed at researchers, students and academics in the field of membrane engineering around the globe, it has following key features: Guides readers through manufacturing, characterizing and using low-cost ceramic technology. Provides an overview of the different types of ceramic membranes, catalytic reactors and their uses. Covers industrial application, separation and purification. Includes recent developments and advances in membrane fabrication. Discusses new raw materials for ceramic membranes.
Over recent years electronic spectroscopy has developed significantly, with key applications in atmospheric chemistry, astrophysics and astrochemistry. High Resolution Electronic Spectroscopy of Small Molecules explores both theoretical and experimental approaches to understanding the electronic spectra of small molecules, and explains how this information translates to practice. Professors Geoffrey Duxbury and Alexander Alijah present the links between spectroscopy and photochemistry, and discuss theoretical treatments of the interaction between different electronic states. They provide a thorough discussion of experimental techniques, and explore practical applications. This book will be an indispensable reference for graduate students and researchers in physics and chemistry working on theoretical and practical aspects of electronic spectra, as well as atmospheric scientists, photochemists, kineticists and professional spectroscopists.
Protein folding and aggregation is the process by which newly synthesized proteins fold into the specific three-dimensional structures defining their biologically active states. It has always been a major focus of research in biochemistry and has often been seen as the unsolved second part of the genetic code. In the last 10 years we have witnessed a quantum leap in the research in this exciting area. Computational methods have improved to the extent of making possible to simulate the complete folding process of small proteins and the early stages of protein aggregation. Experimental methods have evolved to permit resolving fast processes of folding reactions and visualizing single molecules during folding. The findings from these novel experiments and detailed computer simulations have confirmed the main predictions of analytical theory of protein folding. In summary, protein folding research has finally acquired the status of a truly quantitative science, paving the way for more exciting developments in the near future. This unique book covers all the modern approaches and the many advances experienced in the field during the last 10 years. There is also much emphasis on computational methods and studies of protein aggregation which have really flourished in the last decade. It includes chapters in the areas that have witnessed major developments and are written by top experts including:computer simulations of folding, fast folding, single molecule spectroscopy, protein design, aggregation studies (both computational and experimental). Readers will obtain a unique perspective of the problems faced in the biophysical study of protein conformational behaviour in aqueous solution and how these problems are being solved with a multidisciplinary approach that combines theory, experiment and computer simulations. Protein Folding, Misfolding and Aggregation Classical Themes and Novel Approaches is essential reading for graduate students actively involved in protein folding research, other scientists interested in the recent progress of the field and instructors revamping the protein folding section of their biochemistry and biophysics courses.
This book offers a comprehensive overview of recent advances in the area of laser-induced breakdown spectroscopy (LIBS), focusing on its application to biological, forensic and materials sciences. LIBS, which was previously mainly used by physicists, chemists and in the industry, has now become a very useful tool with great potential in these other fields as well. LIBS has a unique set of characteristics including minimal destructiveness, remote sensing capabilities, potential portability, extremely high information content, trace analytical sensitivity and high throughput. With its content divided into two main parts, this book provides not only an introduction to the analytical capabilities and methodology, but also an overview of the results of recent applications in the above fields. The application-oriented, multidisciplinary approach of this work is also reflected in the diversity of the expert contributors. Given its breadth, this book will appeal to students, researchers and professionals interested in solving analytical/diagnostic/material characterization tasks with the application of LIBS.
A concise description of models and quantitative parameters in structural chemistry and their interrelations, with 280 tables and >3000 references giving the most up-to-date experimental data on energy characteristics of atoms, molecules and crystals (ionisation potentials, electron affinities, bond energies, heats of phase transitions, band and lattice energies), optical properties (refractive index, polarisability), spectroscopic characteristics and geometrical parameters (bond distances and angles, coordination numbers) of substances in gaseous, liquid and solid states, in glasses and melts, for various thermodynamic conditions. Systems of metallic, covalent, ionic and van der Waals radii, effective atomic charges and other empirical and semi-empirical models are critically revised. Special attention is given to new and growing areas: structural studies of solids under high pressures and van der Waals molecules in gases. The book is addressed to researchers, academics, postgraduates and advanced-course students in crystallography, materials science, physical chemistry of solids.
A constructive evaluation of the most significant developments in liquid chromatography-mass spectrometry (LC-MS) and its uses for quantitative bioanalysis and characterization for a diverse range of disciplines, Liquid Chromatography-Mass Spectrometry, Third Edition offers a well-rounded coverage of the latest technological developments and applications. As the technology itself has matured into a reliable analytical method over the last 15 years, the most exciting developments occur in LC-MS augments research into new applications. This edition places a stronger emphasis than previous editions on the impact of LC-MS methods, dedicating two-thirds of the text to small-molecule and biomolecular applications such as proteomics, pharmaceutical drug discovery and development, biochemistry, clinical analysis, environmental studies, and natural products research. Supported by the most relevant literature available, each chapter examines how the strategies, technologies, and recent advances-from sample pretreatment to data processing-in LC-MS helped to shape these disciplines. Featuring new chapters and extensive revisions throughout the book, Liquid Chromatography-Mass Spectrometry, Third Edition continues to provide scientists with a definitive guide and reference to the most important principles, strategies, and experimental precedents for applying LC-MS to their research.
Metabolomics is a fast growing field in systems biology and offers a powerful and promising approach for a large range of applications. Metabolomics focuses on deriving the concentrations and fluxes of low molecular weight metabolites in bio-fluids, cells or tissue, plants, foods and related samples and this information provides enormous detail on biological systems and their current status. "Mass Spectrometry in Metabolomics: Methods and Protocols "presents a broad coverage of the major mass spectrometry (MS)-based metabolomics methods and applications. MS is one of most powerful and commonly used analytical methods in metabolomics; because so many different MS systems are used in metabolomics, this volume includes a wide variety such as triple quads, time of flight, Fourier transform ion cyclotron resonance and even simple quadrupole systems. A wide range of studies are described, with samples ranging from blood and urine to tissue and even plants. Written in the successful "Methods in Molecular Biology" series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, "Mass Spectrometry in Metabolomics: Methods and Protocols "seeks to serve both professionals and novices with its well-honed methodologies in an effort to further the dynamic field of metabolomics.
This book examines Thomas Hardy's representations of the road and the ways the archaeological and historical record of roads inform his work. Through an analysis of the uneven and often competing road signs found within three of his major novels - The Return of the Native, Tess of the D'Urbervilles, and Jude the Obscure - and by mapping the road travels of his protagonists, this book argues that the road as represented by Hardy provides a palimpsest that critiques the Victorian construction of social and sexual identities. Balancing modern exigencies with mythic possibilities, Hardy's fictive roads exist as contested spaces that channel desire for middle-class assimilation even as they provide the means both to reinforce and to resist conformity to hegemonic authority.
This volume presents a complete and thorough examination of advances in the instrumentation, evaluation, and implementation of UV technology for reliable and efficient data acquisition and analysis. It provides real-world applications in expanding fields such as chemical physics, plasma science, photolithography, laser spectroscopy, astronomy and atmospheric science.
Conjugated polymeric materials and their nanocomposites are widely used for the creation of alternative sources of renewable energy, cell phone screens, mobile gadgets, video players and OLED-TV, as well as organic diodes, transistors, sensors, etc. with field-dependent and spin-assisted electronic properties. Multifrequency EPR Spectroscopy methods can help researchers optimize their structural, magnetic and electronic properties for the creation of more efficient molecular devices. This book will acquaint the reader with the basic properties of conjugated polymers, the fundamentals of EPR Spectroscopy, and the information that can be obtained at different wavebands of EPR spectroscopy.
This book reviews advances in important and practically relevant homogeneous catalytic transformations, such as single-site olefin polymerizations and chemo- and stereo-selective oxidations. Close attention is paid to the experimental investigation of the active sites of catalytic oxidation systems and their mechanisms. Major subjects include the applications of NMR and EPR spectroscopic techniques and data obtained by other physical methods. The book addresses a broad readership and focus on widespread techniques available in labs with NMR and EPR spectrometers.
Selecting illustrative examples from the recent literature, this reference studies the underlying principles and physics of a wide range of spectroscopic techniques utilized in the pharmaceutical sciences and demonstrates various applications for each method analyzed in the text-showing how knowledge of the mechanisms of spectroscopic phenomena may facilitate more advanced technologies in the field.
Atomic spectrometry has exciting new bio-analytical horizons open to it, principally through the developments in the capabilities of ICP-MS coupled with the inventiveness of experimentalists. This is reflected in the use of the technique for ion-, capillary electrophoresis-, liquid- and gas-chromatographic separation in biological applications, as reported in this book. Traditional (environmental, semiconductor, geological and clinical) applications are also well represented. In addition, recent and future developments in sample introduction devices, multicollector sector, reaction cells and collision cells instruments, as well as co-existence, divergence and potential convergence of atomic and biomolecular mass spectrometries are discussed. Reflecting the current state of practical ICP-MS and drawing together the latest developments in the field, Plasma Source Mass Spectrometry: Current Trends and Future Developments is ideal for university researchers and laboratory practitioners. It will be of interest to all those involved in the development and application of this technique.
Advances in Chromatography is a venerable series that has reported on the latest state-of-the-art developments in the field for the past four decades. The newest installment, Volume 49, continues the tradition of compiling the work of expert contributors who present timely and cutting edge reviews of current and emerging methods and applications in this dynamic field. Highlights in this edition include: The hyphenation of liquid chromatography with mass spectrometry in order to determine oligonucleotide adducts as markers for cancer Glycoproteomics and the glycosylation of proteins, addressing biomarkers in different types of diseases Chiral separation, an important area particularly in the pharmaceutical industry, where the technique has been applied with varying results Ion-pairing chromatography and analyte retention Conveying the most recent significant scientific developments in separation science, the book and its series are known for the authors' clear presentation of topics and vivid illustrations. Accessible and engaging, this volume forms a solid foundation for the work of biochemists and analytical, organic, polymer, and pharmaceutical chemists at all levels of technical skill. Meticulously referenced, it will help fuel further research across a range of fields.
The first edition of this now classic work helped to establish mass spectrometry as the premier tool for drug metabolism studies. Completely rewritten from start to finish, Using Mass Spectrometry for Drug Metabolism Studies, Second Edition brings medicinal chemists and mass spectrometry professionals up to speed with the rapid advances in the field, the emergence of cutting-edge approaches, and ways to meet steadily increasing vendor demands. Written by international scientists who are experts in their respective disciplines, this state-of-the-art reference effectively encapsulates current mass spectrometry best practices. The stand-alone chapters cover various topics - from metabolite identification to fast chromatography with UPLC - and in a style that is understandable to experts and field newcomers alike. The second edition of this bestseller includes coverage of new instrumentation and software as well as a wealth of updated information on the latest findings surrounding biomarkers and metabolomics and new chapters on both UPLC and DESI/DART. With more than 180 illustrations and an eight-page color insert, this valuable reference explores multiple modern mass spectrometry techniques and strategies. It includes an excellent overview of the entire drug discovery process plus the latest developments on how mass spectrometry is used to support this endeavor.
Written by leading international experts in academia and industry, Advances in Chromatography, Volume 46 presents all new chapters with thorough reviews on the latest developments in the field. Volume 46 includes new advances in two-dimensional gas chromatography, reversed phase liquid chromatography/shape selectivity, and supercritical fluid chromatography. The book highlights enantioselective separations with emphasis on chiral recognition mechanisms, screening approaches, and separation speed. It also emphasizes hyphenated techniques and enhanced fluidity chromatography with emphasis on monolithic organo-silica hybrid columns. This volume provides an excellent starting point for gaining quick knowledge to the field of separation science.
Raman Spectroscopy in Archaeology and Art History highlights the important contributions Raman spectroscopy makes as a non-destructive method for characterising the chemical composition and structure and in determining the provenance and authenticity of objects of archaeological and historical importance. It brings together studies from diverse areas and represents the first dedicated work on the use of this technique in this increasingly important field. Coverage includes: An Introduction to Raman Spectroscopy, including practical aspects of Raman spectroscopy and complementary techniques; Dyes and Pigments; Artefacts; Biological Materials and Degradation; Jewellery and Precious Stones. The book contains a broad selection of real-world examples in the form of case studies to provide the reader with a true appreciation of the procedures that need to be invoked to derive spectroscopic information from some of the most challenging specimens and systems. Colour illustrations of objects of investigation and a database of 72 Raman spectra of relevant minerals are included. With its extensive examples, Raman Spectroscopy in Archaeology and Art History will be of particular interest to specialists in the field, including researchers and scientific/conservation staff in museums. Academics will find it an invaluable reference to the use of Raman spectroscopy.
Mass Spectrometry: A Foundation Course is a textbook covering the field of mass spectrometry across the chemical, physical, biological, medical and environmental sciences. Sufficient depth is provided for the reader to appreciate the reasons behind and basis for particular experiments. It is uniquely and logically organised to enable the book to form the basis for a university course in mass spectrometry at the undergraduate or postgraduate level. This is achieved by combining specific core sections coupled to optional areas of study tailored to students of the chemical, physical, biological, medical and environmental sciences. Recommended course structures are provided in the front of the book. Dedicated chapters are included on: organic mass spectrometry; ion chemistry - to emphasise the role of mass spectrometry in fundamental chemistry and physics; biological mass spectrometry including proteomics; mass spectrometry in medicine, environmental and surface science and accelerator mass spectrometry, to emphasise the importance of these areas. Each chapter concludes with key references and additional recommended reading material, making the book an excellent springboard to further study. Highly readable, easy-to-use and logically presented, Mass Spectrometry: A Foundation Course is an ideal text for students and for those who work with mass spectrometers who wish to gain a solid understanding of the basics in modern mass spectrometry. "From the reviews: " " Although I am not a fan or either "eras" or "omes" you hear all the time that we now live in the era of the proteome. Setting aside the issues of what constitutes proteomics (after all people have been sequencingproteins and studying their structure for a few years nowA... ), and whether the regular appearance of reports of another organisms genome sequence prevents you from saying that we are in the post-genomic era, it is clear that the analysis of large numbers of complex protein mixtures is just about in all of our reach. This is going to be a very important way to look for molecular markers and targets in the battle against cancer. The bedrock of proteomic analysis is mass spectrometry, which
allows you to accurately measure the mass of molecules. In
proteomics this can mean studying the mass of intact proteins,
which can give you a clue as to their identity, and help you
rapidly identify modifications. It can also mean busting the
protein into many component fragments and measuring their mass,
which can lead to protein identification via clever algorithms that
compare measured fragment sizes to predicted ones using the genome
databases. The first is Mass Spectrometry: A Foundation Course by Kevin Downard of Sydney, Australia. This book covers many aspects of the field in under 200 pages, and has a handy guide to what sections are useful to individuals from different disciplines. It starts with history and concepts, and then devotes a significant amount of space to the instrumentation. This is very useful to anyone who has been to a massspectrometry meeting and trade show or even browsed the relevant companies websites. Dr. Downard covers the basics of how each variant works, and what it is best suited for, and includes discussion of single and tandem instruments. By the end you'll be able to raise your eyebrows appreciatively the next time a salesman fires an acronym and figure at you (or at least you'll know where to look it up once you have reached a safe distance). The second half of the book looks at specific applications for mass spectrometry, and here you can read selectively on what you are interested in doing. The sections on protein analysis were good primers. The book is quite mathematical throughout, and since I have no talent in this direction, the equations merely confirmed my deficiency in this area - to those of you who like it, it is there. Then at the end are a series of very useful appendices that show amino acid masses, masses of common protein modifications and websites for further reading or for protein identification, among other useful things. I recommend this book highly to anyone looking for a first port of call on the journey to mass spectrometry." [Oliver Bogler] "From the reviews: " " Mass spectrometry today plays a vital role in a range of
scientific disciplines including synthetic and physical organic
chemistry, biological and medicinal chemistry and environmental and
surface sciences. Few introductory texts have kept up with these advances, although there have been recent specialist texts on biotechnology and on LC/MS. Downard's book seeks to provide a basis for instruction of undergraduate and new postgraduate students. His philosophy has been to write introductory sections for all the basic aspects of mass spectrometry - his 'core' course - and to add sections for the major areas in which it is employed. These additional sections can be optionally added to the core course, as desired. Downard provides a menu suggesting how they can be put together. Each core section is well written and covers the basis of the science concerned very satisfactorily. The sections that describe the different applications are necessarily condensed and the author tries to give extra reading with a good set of references. Students who plan to use mass spectrometry in proteomic research will require much further assistance and the same goes for metabolomic/metabonomic studies and for users of quantitative analysis, but, for both, the core sections will be valuable." [Tony Mallet]
Since the completion of the first edition of this book, major developments have occurred in the pharmaceutical industry that have shaped the field of near-infrared (NIR) spectroscopy. A new initiative from the U.S. Food and Drug Administration (FDA) to modernize regulations of pharmaceutical manufacturing and drug quality has helped position NIR spectroscopy as an effective tool for pharmaceutical testing. Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy: Second Edition reflects these developments and brings readers an up-to-date summary of how this technique is being applied to pharmaceutical manufacturing. Topics include: The origins and principles of NIR spectroscopy, including early instrumentation, spectroscopic theory, and light-particle interaction The physics of each instrument type, the strengths and weaknesses of each, and the manufacturers that produce them The possible advantages of using NIR methods for monitoring or controlling blending, as well as practical concerns for mixing processes NIR spectroscopy as applied to traditional granulation, drug layering, and film coating of beads or granules Pharmaceutical assays, including qualitative analysis, quantitative analysis, determination of actives in tablets and capsules, and considerations for intact dosage form analysis Steps involved in the validation and acceptance of an NIR spectroscopy method, including quality assurance, qualification and verification of instruments, and the International Conference on Harmonization (ICH) guidelines Medical applications, including those related to blood glucose measurements, tissue and major organ analysis, fetal analysis, and cancer research Providing comprehensive coverage of NIR spectroscopy, from theory, mathematics, application, and mechanics of NIR analysis, the book supplies ample references to facilitate further rese |
You may like...
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku
Paperback
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
(2)
|