![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
Nuclear magnetic resonance (NMR) spectroscopy is one of the most
powerful and widely used techniques in chemical research for
investigating structures and dynamics of molecules. Advanced
methods can even be utilized for structure determinations of
biopolymers, for example proteins or nucleic acids. NMR is also
used in medicine for magnetic resonance imaging (MRI). The method
is based on spectral lines of different atomic nuclei that are
excited when a strong magnetic field and a radiofrequency
transmitter are applied. The method is very sensitive to the
features of molecular structure because also the neighboring atoms
influence the signals from individual nuclei and this is
Impedance Spectroscopy is a powerful measurement method used in many application fields such as electro chemistry, material science, biology and medicine, semiconductor industry and sensors. Using the complex impedance at various frequencies increases the informational basis that can be gained during a measurement. It helps to separate different effects that contribute to a measurement and, together with advanced mathematical methods, non-accessible quantities can be calculated. This book is the second in the series Lecture Notes on Impedance Spectroscopy (LNIS). The series covers new advances in the field of impedance spectroscopy including fundamentals, methods and applications. It releases scientific contributions as extended chapters including detailed information about recent scientific research results.
Analytical Methods for Food Safety by Mass Spectrometry, Volume Two: Veterinary Drugs systematically introduces the Pesticide and Veterinary Drug Multiresidues Analytical Methods, with discussions on 69 veterinary drug multiresidues chromatic-MS analytical methods that are capable of detecting over 200 veterinary drugs and chemical residues of 20 categories, such as ss-agonists, ss-lactams, aminoglycosides, amphenicols, anabolic hormone, anabolic steroids, avermectins, benzimidazole, cephalosporins, glucocorticoid steroids, macrolides, nitrofurans, nitroimidazoles, NSAIDs, polyether, polypeptides, progestagens, pyrazolones, quinolones, quinoxalines, sedatives, sulfonamides, synthetic estrogens, tetracyclines, thyreostats, and other toxins in animal and poultry tissues, acquatic products, milk, milk powders and bee products. This valuable book can be used as reference for not only university students, but also technical personnel of different specialties who are engaged with study and applications, such as food safety, agricultural environment protection, pesticide development, and utilization in scientific research units, institutions and quality inspection organizations.
Analytical Methods for Food Safety by Mass Spectrometry, Volume One: Pesticides systematically introduces the Pesticide and Veterinary Drug Multiresidues Analytical Methods. Volume One includes discussions on 20 pesticide multiresidues chromatic-MS (GC-MS and LC-MS/MS) analytical techniques that have the capability of detecting over 800 pesticides and chemicals in 10 categories of agricultural products, including fruits, vegetables, grains, teas, Chinese medicinal herbs, edible fungus mushrooms, fruit and vegetable juices, animal tissues, aquatic products, raw milk and milk powders, and drinkable water. This book also includes chromatic-MS analytical parameters, linear equations and GPC chromatic behavior parameters for over 800 pesticides. This valuable book can be used as reference for not only university students, but also technical personnel of different specialties who are engaged with study and applications, such as food safety, agricultural environment protection, pesticide development, and utilization in scientific research units, institutions and quality inspection organizations.
Describes the thermodynamics and kinetics underlying hydrophobic interaction chromatography of proteins. Outlines use of a kinetic model in the predictive modeling of evaporation processes that eliminates the need to know the composition and identity of the chemical constituents in the sample. Explores building and employing QSRR models in cyclodextrin modified high-performance liquid chromatography (HPLC). Reviews chemometric methods commonly paired with comprehensive 2D separations and key instrumental and preprocessing considerations.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Mass Spectrometry: Principles and Applications, Third Edition Edmond de Hoffmann, "UniversitA(c) Catholique de Louvain, Belgium" and Vincent Stroobant, "Ludwig Institute for Cancer Research, Brussels Branch, Belgium." "Mass Spectrometry, Third Edition" provides students with a complete overview of the principles, theories and key applications of modern mass spectrometry. Extensively revised and updated, the third edition of this successful textbook focuses on recent developments in techniques and applications. All instrumental aspects of mass spectrometry are clearly and concisely described. Emphasis is placed throughout the text on practical application examples. As with previous editions, it contains numerous tables of useful data, references and a series of exercises of increasing difficulty to encourage student understanding. Provides a complete overview of the principles, theories and applications of modern mass spectrometry An extensive revision and update including: increased coverage of MALDI and ESI, resolution and mass accuracy and activation of ions New material about instruments such as linear traps, Orbitrap, TOF/TOF, hybrid instruments, and about new atmospheric ionisation techniques such as APPI, DESI, DART. The range of applications has been expanded and newer methods such as metabolome are included Contains numerous examples and exercises to encourage student understanding "Mass Spectrometry: Principles and Applications, Third Edition" will prove invaluable to undergraduates and postgraduates using this technique in departments of chemistry, biochemistry, medicine, pharmacology, agriculture, materials science and food science. It will alsoappeal to researchers looking for an overview of the latest techniques and developments.
This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a comprehensive physical picture for the Raman effect. In particular, this classical treatment unifies ROA and VCD (vibrational circular dichroism) on equal footing. In each section, Comments summarize the key ideas and their evaluation. This will help the readers to capture the core ideas of the presentations.
The text Organic Structures from 2D NMR Spectra contains a graded set of structural problems employing 2D-NMR spectroscopy. The Instructors Guide and Solutions Manual to Organic Structures from 2D NMR Spectra is a set of step-by-step worked solutions to every problem in Organic Structures from 2D NMR Spectra. While it is absolutely clear that there are many ways to get to the correct solution of any of the problems, the instructors guide contains at least one complete pathway to every one of the questions. In addition, the instructors guide carefully rationalises every peak in every spectrum in relation to the correct structure. The Instructors Guide and Solutions Manual to Organic Structures from 2D NMR Spectra: Is a complete set of worked solutions to the problems contained in Organic Structures from 2D NMR Spectra. Provides a step-by-step description of the process to derive structures from spectra as well as annotated 2D spectra indicating the origin of every cross peak. Highlights common artefacts and re-enforces the important characteristics of the most common techniques 2D NMR techniques including COSY, NOESY, HMBC, TOCSY, CH-Correlation and multiplicity-edited C-H Correlation. This guide is an essential aid to those teachers, lecturers and instructors who use Organic Structures from 2D NMR as a text to teach students of Chemistry, Pharmacy, Biochemistry and those taking courses in Organic Chemistry.
The term magnetic resonance covers a wide range of techniques, spectroscopy, relaxation and imaging. In turn, these areas are evolving and leading to various new applications of NMR and ESR in food science and nutrition. From assessment of meat quality, through to a study of beer components and the effect of microwaves on potato texture, Magnetic Resonance in Food Science: Latest Developments provides an account of the state of the art in this lively area. Coverage includes: recent developments in magnetic resonance; human aspects of food; structure and dynamics in food; and food quality control. With contributions from international experts, this book is essential reading for academics and industrialists in food science. It is the latest in a series of titles in this area published by the RSC.
Infrared and Raman Spectroscopy, Principles and Spectral Interpretation, Second Edition provides a solid introduction to vibrational spectroscopy with an emphasis on developing critical interpretation skills. This book fully integrates the use of both IR and Raman spectroscopy as spectral interpretation tools, enabling the user to utilize the strength of both techniques while also recognizing their weaknesses. This second edition more than doubles the amount of interpreted IR and Raman spectra standards and spectral unknowns. The chapter on characteristic group frequencies is expanded to include increased discussions of sulphur and phosphorus organics, aromatic and heteroaromatics as well as inorganic compounds. New topics include a discussion of crystal lattice vibrations (low frequency/THz), confocal Raman microscopy, spatial resolution in IR and Raman microscopy, as well as criteria for selecting Raman excitation wavelengths. These additions accommodate the growing use of vibrational spectroscopy for process analytical monitoring, nanomaterial investigations, and structural and identity determinations to an increasing user base in both industry and academia.
Handbook of Magnetic Materials, Volume 26, covers the expansion of magnetism over the last few decades and its applications in research, notably the magnetism of several classes of novel materials that share the presence of magnetic moments with truly ferromagnetic materials. The book is an ideal reference for scientists active in magnetism research, providing readers with novel trends and achievements in magnetism. Each article contains an extensive description given in graphical, as well as, tabular form, with much emphasis placed on the discussion of the experimental material within the framework of physics, chemistry and material science.
This book gives an overview of the numerical data analysis and signal treatment techniques that are used in chromatography and related separation techniques. Emphasis is given to the description of the symmetrical and asymmetrical chromatographic peak shape models. Both theoretical and empirical models are discussed. The fundamentals of data acquisition, types and effect of baseline noise, and methods of improving the signal-to-noise ratio (either in time or in frequency and wavelet domain) are thoroughly discussed. Resolution enhancement techniques, such as curve fitting, deconvolution by Fourier and wavelet transforms, iterative deconvolution, Kalman filtering and multivariate methods of curve resolution are all discussed with several chromatographic examples. Quantitative analysis by peak area of peak height measurement, the precision and accuracy of the quantitation of stand-alone or overlapping and symmetrical or asymmetrical peaks are treated. In a separate chapter, guidelines are given for the use of transform techniques for the analysis of chromatograms. A statistical description of peak overlap is given in the final chapters. Since the concept of resolution has to be reconsidered when one separates complex mixtures, the problem of resolution and overlap is quantitatively discussed by means of statistical methods, and by using Fourier analysis of the complex chromatogram. Features of this book The ultimate source of numerical techniques to enhance chromatographic data Gives a detailed description of signal and resolution enhancement techniques in a manner applicable for enhancing not only chromatography, but also spectroscopic and other analytical signals The first book with a thorough overview of the statistics of peak overlap. This is the first volume to encompass both the simple and more sophisticated methods for the numerical treatment of chromatograms. It is, therefore, the fundamental resource of numerical analysis methods for every analyst."
CRC Handbook of Chromatography: Carbohydrates, Volume II updates the first volume, continuing coverage of literature published from 1979 to 1989. Tabulated for easy reference and thoroughly documented, it presents the comprehensive data for all chromatographic techniques applicable to carbohydrates. It features glycoproteins, proteoglycans, and glycolipids, as well as mono-, oligo-, and polysaccharides. This important text emphasizes novel chromatographic methods. Highlights of this superb work include the diversity of HPLC methods applicable to carbohydrates, and the use of some new techniques, including supercritical fluid chromatography and ion chromatography in carbohydrate analysis. Readers discover the latest detection methods, degradative processes, and derivatization techniques. Detailed chapters cover topics such as spectroscopic techniques, electrochemistry, and gas chromatography. This easy-to-use volume provides an excellent working manual and reference book for researchers in the fields of carbohydrate chemistry and biochemistry. CRC Handbook of Chromatography, Carbohydrates: Volume II is an absolute must for all analysts working for industries concerned with carbohydrates.
The CRC Handbook of Chromatography is a series of work-bench references for scientists and researchers using chromatographic systems for the analysis of organic and inorganic compounds. This handbook is an assemblage of tables where, besides data obtained by modern separation methods, older sources often difficult to access have been included to give maximum information. For use in scientific research and routine analysis where the exact determination of plant pigments, because of their light absorbing properties and defined tasks, is necessary.
Molecular and Laser Spectroscopy: Advances and Applications provides students and researchers with an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. Editor V.P. Gupta has brought together the eminent scientists on a selection of topics to develop a systematic approach, first covering basic principles needed to understand each cutting-edge technique and application. This book acts as a standard reference for advanced students of molecular and laser spectroscopy and as a graduate text for new entrants in the field. The book covers a wide range of applications of molecular and laser spectroscopy in diverse areas ranging from materials to medicine and defence, biomedical research, environmental monitoring, forensic investigations, food and agriculture, and chemical, pharmaceutical and petrochemical processes. Researchers and scientific personnel in these fields will learn the latest techniques in order to put them to practical use in their work.
NMR Case Studies: Data Analysis of Complicated Molecules provides a detailed discussion of the full logical flow associated with assigning the NMR spectra of complex molecules, also helping readers further develop their NMR spectral assignment skills. The robust case studies present the logic of each assignment, from beginning to end, fully exploring the available range of potential solutions. Readers will gain a better appreciation of various approaches and develop an intuitive sense for when this particular concept should be implemented, thus enhancing their skillsets and providing a host of methodologies potentially amenable to yielding correct assignments. Authored by a scientist with more than 20 years of experience in research and instruction, this book is the ideal reference for anyone in search of application-based content. The book addresses complicated molecules, including corticosteroids, biomolecules, polypeptides, and secondary metabolites.
Handbook of Advanced Chromatography /Mass Spectrometry Techniques is a compendium of new and advanced analytical techniques that have been developed in recent years for analysis of all types of molecules in a variety of complex matrices, from foods to fuel to pharmaceuticals and more. Focusing on areas that are becoming widely used or growing rapidly, this is a comprehensive volume that describes both theoretical and practical aspects of advanced methods for analysis. Written by authors who have published the foundational works in the field, the chapters have an emphasis on lipids, but reach a broader audience by including advanced analytical techniques applied to a variety of fields. Handbook of Advanced Chromatography / Mass Spectrometry Techniques is the ideal reference for those just entering the analytical fields covered, but also for those experienced analysts who want a combination of an overview of the techniques plus specific and pragmatic details not often covered in journal reports. The authors provide, in one source, a synthesis of knowledge that is scattered across a multitude of literature articles. The combination of pragmatic hints and tips with theoretical concepts and demonstrated applications provides both breadth and depth to produce a valuable and enduring reference manual. It is well suited for advanced analytical instrumentation students as well as for analysts seeking additional knowledge or a deeper understanding of familiar techniques.
Annual Reports on NMR Spectroscopy, Volume 92 provides a thorough and in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications. Topics presented include new chapters on The DEPT Experiment and Some of Its Useful Variants, NMR Studies of Organic Aerosols, Recent NMR Studies of Thermoelectric Materials, Nonlinear Effects in NMR, Applications of Solid-State 43 Ca Nuclear Magnetic Resonance: Superconductors, Glasses, Biomaterials, and NMR Crystallography, and Solid-State NMR Spectroscopy: The Magic Wand to View Bone at Nanoscopic Resolution. This book has established itself as a premier means for both specialists and non-specialists who are looking to become familiar with new techniques and applications pertaining to NMR spectroscopy.
Over the past four decades, notable advancements in the theory and application of ion exchange science uncovered a wealth of knowledge that fueled new scientific pursuits and created synergies with myriad scientific endeavors. Today, pioneers continue to break new ground by synthesizing novel materials and merging the interdisciplinary fields of science and engineering. Now in its 20th volume, Ion Exchange and Solvent Extraction: A Series of Advances chronicles the ongoing changes that drive innovation in this important field. Beginning with a review of research studies that show how functionalized ion exchange polymers serve as supports to stabilize metal nanoparticles (MNPs) without forming larger than nano aggregates, the book describes the sorption of different gases from the air by ion exchange resins and fibrous ion exchangers and discusses the selective ion exchange technology capable of removing and recovering perchlorate quantitatively through stable isotope ratio analysis of chlorine and oxygen atoms, allowing for the forensic analysis of perchlorate origin in contaminated water. Later chapters demonstrate how numerical simulations coupled with small-scale bench-top experiments can help tailor particle size distribution and enhance the efficiency of each application, review dual-temperature ion exchange processes in which sorption and desorption are carried out solely by varying temperature, and present the preparation and characterization of a new composite material in which microparticles of clinoptilolite are embedded in a matrix of cross-linked chitosan, opening new opportunities for the natural biopolymer. The book concludes with the preparation, characterization, and field-level experience of an emerging class of "hybrid ion exchangers" that enhance the application opportunities of ion exchange resins. Highlighting the latest and most pivotal discoveries, the 20th volume of a field standard codifies the current state-of-the-art and lays the groundwork for the next generation of growth and expansion in the field of ion exchange.
Helping you better understand the processes, instruments, and methods of aerosol spectroscopy, Fundamentals and Applications in Aerosol Spectroscopy provides an overview of the state of the art in this rapidly developing field. It covers fundamental aspects of aerosol spectroscopy, applications to atmospherically and astronomically relevant problems, and several aspects that need further research and development. Chapters in the book are arranged in order of decreasing wavelength of the light/electrons. The text starts with infrared spectroscopy, one of the most important aerosol characterization methods for laboratory studies, field measurements, remote sensing, and space missions. It then focuses on Raman spectroscopy for investigating aerosol processes in controlled laboratory studies and for analyzing environmental particles and atmospheric pollution. The next section discusses the use of cavity ring-down spectroscopy to measure light extinction, laser-induced fluorescence spectroscopy to identify and classify biological aerosol particles, and ultrafast laser techniques to improve the specificity of bioaerosol detection. The final section examines recent developments involving novel techniques based on UV, x-ray, and electron beam studies. This book offers the first comprehensive overview of the spectroscopy of aerosols. It includes some results for the first time in the literature and presents a unique link between fundamental aspects and applications.
For more than five decades, scientists and researchers have relied on the Advances in Chromatography series for the most up-to-date information on a wide range of developments in chromatographic methods and applications. For Volume 55, established, well-known chemists offer cutting-edge reviews of chromatographic methods to pay tribute to the late Eli Grushka, beloved series editor, who inspired and mentored many in the field of separation science. The clear presentation of topics and vivid illustrations for which this series has become known makes the material accessible and engaging to analytical, biochemical, organic, polymer, and pharmaceutical chemists at all levels of technical skill.
The porphyrins, chlorophylls, bilins and related tetrapyrroles are vital for all living organisms. Natural and synthetic tetrapyrroles are used extensively in foods, cosmetics, biotechnology, pharmaceuticals, diagnostics and medicine. Methods for their separation and characterization therefore, have a very wide area of applications. Yet, there is a dearth of books dedicated to HPLC and HPLC/MS of tetrapyrroles. Lim addresses this problem admirably by providing practical HPLC and HPLC/MS protocols coupled with in-depth chromatographic and mass spectrometric reference data. These are invaluable in the analysis, identification and characterization of porphyrins, chlorophylls, bilins and other related compounds found in biological and clinical materials. HPLC method development and optimization for coupling to mass spectrometry are also described in rich detail. Sample preparation, and suggestions for avoiding procedural artifacts during extraction of clinical and biological samples are discussed. Clinical biochemists involved in biochemical diagnosis of human porphyrias will find this monograph assuredly helpful, as would analysts, biochemists and chemists involved in the separation, isolation and characterization of natural and synthetic tetrapyrroles. Undoubtedly, Lim has contributed a master-piece containing sufficient background material for beginners and up-to-date references for all researchers in the field.
This book presents a blueprint for researchers in the area of nanotechnology for chemical defense, especially with regard to future research on detection and protection. It addresses the synthesis of complex nanomaterials with potential applications in a broad range of sensing systems. Above all, it discusses novel experimental and theoretical tools for characterizing and modeling nanostructures and their integration in complex systems. The book also includes electronic structure calculations exploring the atomic and quantum mechanical mechanisms behind molecular binding and identification, so as to provide readers with an in-depth understanding of the capabilities and limitations of various nanomaterial approaches. Gathering contributions by scientists with diverse backgrounds, the book offers a wealth of insightful information for all scientists whose work involves material science and its applications in sensing.
This is the first book that comprehensively and systematically describes the new technology of hydrophilic interaction liquid chromatography (HILIC). Hydrophilic interaction chromatography is a separation technique suitable for polar and hydrophilic compounds and orthogonal to reversed phase liquid chromatography. From small organic molecules to proteins, the text explores the many applications of HILIC in the analytical field. Winner of the President's Award for Excellence, the author explains how HILIC can significantly improve analytical throughput by shortening sample preparation procedure, which is one of the bottlenecks for drug discovery and development in the pharmaceutical industry. |
![]() ![]() You may like...
How To Identify Trees In South Africa
Braam van Wyk, Piet Van Wyk
Paperback
Young People Using Family Violence…
Kate Fitz-Gibbon, Heather Douglas, …
Paperback
R3,331
Discovery Miles 33 310
The Oxford Companion to American Theatre
Gerald Bordman, Thomas S. Hischak
Hardcover
R2,516
Discovery Miles 25 160
Encyclopedia of Spectroscopy and…
John C. Lindon, George E. Tranter, …
Hardcover
R63,005
Discovery Miles 630 050
Interrogating Young Suspects I…
Michele Panzavolta, Dorris De Vocht, …
Paperback
R2,581
Discovery Miles 25 810
|