![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
Here, the authors introduce readers to solving molecular structure elucidation problems using the expert system ACD/Structure Elucidator. They explain in detail the concepts of the Computer-Assisted Structure Elucidation (CASE) approach and point out the crucial role of understanding the axiomatic nature of the data used to deduce the structure. Aspects covered include the main blocks of the expert system and essential features of the mathematical algorithms used. Graduate and PhD students as well as practicing chemists are provided with a detailed explanation of the various practical approaches depending on available spectral data peculiarities and the complexity of the unknown structure. This is supported by a large number of real-world completed examples, most of which are related to the structure elucidation of natural product molecules containing unusual skeletons. Dedicated software and further supplementary material are available at www.acdlabs.com/TeachingSE.
Provides a systematic review of microextraction techniques applied in analytical toxicology. A comprehensive guide for practical implementation of microextraction techniques in forensic, clinical and analytical laboratories. Contains figures and tables for easy understanding and quick adaptation of parameters of microextraction techniques. Fundamentals, development, and applications of microextraction techniques as a sample preparation procedure are discussed in detail. Extremely useful for the researchers and academicians engaged in the analytical method development using microextraction techniques.
Annual Reports on NMR Spectroscopy provides a thorough and in-depth accounting of the progress made in nuclear magnetic resonance (NMR) spectroscopy and its many applications. Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained as much significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required, and in which the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a premier resource for both specialists and non-specialists alike who want to become familiar with the new techniques and applications of NMR spectroscopy.
In situ Spectroscopic Techniques at High Pressure provides a comprehensive treatment of in-situ applications of spectroscopic techniques at high pressure and their working principles, allowing the reader to develop a deep understanding of which measurements are accessible with each technique, what their limitations are, and for which application each technique is best suited. Coverage is also given to the instrumental requirements for these applications, with respect to the high pressure instrumentation and the spectroscopic components of the equipment. The pedagogical style of the book is supplemented by the inclusion of "study questions" which aim to make it useful for graduate-level courses.
Now a routine tool in biomedical and life science research, live cell imaging has made major progress enabling this core biochemical, cell, and molecular biology technique to become even more powerful, versatile, and affordable. In Live Cell Imaging: Methods and Protocols, a panel of expert contributors provide a comprehensive compendium of experimental approaches to live cell imaging in the form of several overview chapters followed by representative examples and case studies covering different aspects of the most current methodology. By examining a range of state-of-the-art protocols extensively validated in complex biological studies, this volume highlights new experimental and instrumental opportunities and helps researchers to select appropriate imaging methods for their specific biological questions and measurement tasks. Written in the highly successful Methods in Molecular BiologyT series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Live Cell Imaging: Methods and Protocols promises to contribute greatly to the further development and dissemination of this fundamentally important technology which spans across many disciplines including molecular and cell biology, chemistry, physics, optics, engineering, cell physiology, and medicine. Written for: Molecular and cellular biologists, chemists, physicists, optics specialists, engineers, cell physiologists, and medical doctors
For six decades, scientists and researchers have relied on the Advances in Chromatography series for the most up-to date information on a wide range of developments in chromatographic methods and applications. The clear presentation of topics and vivid illustrations for which this series has become known makes the material accessible and engaging to analytical, biochemical, organic, polymer, and pharmaceutical chemists at all levels of technical skill. Key Features: Discusses the basic concepts of affinity chromatography and examines recent developments in this method and related supramolecular separation methods. Outlines the different types of gradient stationary phases and how they have been used in and benefited the field of separation science. Reviews recent trends in detectors for GC, focusing on those that are readily available and seeing wide usage. Addresses peak compression in GELC and offers the reader a plate height equation to work with that incorporates its effects.
Serves as a practical reference for those involved in Secondary Ion Mass Spectrometry (SIMS)- Introduces SIMS along with the highly diverse fields (Chemistry, Physics, Geology and Biology) to it is applied using up to date illustrations- Introduces the accepted fundamentals and pertinent models associated with elemental and molecular sputtering and ion emission- Covers the theory and modes of operation of the instrumentation used in the various forms of SIMS (Static vs Dynamic vs Cluster ion SIMS)- Details how data collection/processing can be carried out, with an emphasis placed on how to recognize and avoid commonly occurring analysis induced distortions- Presented as concisely as believed possible with All sections prepared such that they can be read independently of each other
"Hills is probably the best person I can think of to write this book. He has the deepest background combined with considerable experience in solving problems with food." —R. G. Bryant, University of Virginia. Food scientists have many excellent tools at their disposal with which to study food at both the micro- and macrostructural levels. But, when it comes to analyzing dynamic structural changes in food during processing and storage, none can compare with magnetic resonance imaging (MRI). Still a very young approach, MRI food imaging has contributed greatly to recent advances in food science, and promises to yield much more valuable information in the years ahead. Written by a leading pioneer in the field, Magnetic Resonance Imaging in Food Science covers the latest in MRI food imaging theory and practice. Written primarily for food scientists and engineers, the book offers a practical, unified approach to the subject. Material is organized in three main parts corresponding to the distances of scale probed by MRI studies—namely, the macroscopic, microscopic, and macromolecular. Throughout, the emphasis is on ways in which studies of food undergoing processes can be modeled using the equations of heat, mass, and momentum transport, and how those models can be used in process design optimization programs. Magnetic Resonance Imaging in Food Science provides researchers with the most up-to-date, detailed coverage of:
Magnetic Resonance Imaging in Food Science is an important working resource for all researchers engaged in the never-ending struggle to produce safer, higher-quality foods more efficiently.
Advanced Separations by Specialized Sorbents opens a new window into sorbent materials, presenting fundamental principles for their syntheses and adsorption properties. The book presents advanced techniques used to create specialized sorbents with a wide range of functions that can be used to enhance the separation and/or purification of useful bioactive compounds, heavy metals, dyes, and other substances. It discusses the most recent developments in the field of separation processes, covering specialized sorbents such as monolith cryogels, composite hydrogels, metal-impregnated ion exchangers, and molecularly imprinted polymers. The book provides a comprehensive discussion of the selectivity in separation processes by composite materials based on synthetic polymers/biopolymers and inorganic particles. It is a comprehensive resource for academic and research scientists as well as students interested in the preparation, characterization, and application of specialized sorbents.
Practical NMR Spectroscopy Laboratory Guide is designed to provide non-expert NMR users, typically graduate students in chemistry, an introduction to various facets of practical solution-state NMR spectroscopy. Each chapter offers a series of hands-on exercises, introducing various NMR concepts and experiments and guiding the reader in running these experiments using an NMR spectrometer. The book is written for use with a Bruker NMR spectrometer running TopSpin software versions 1 or 2. This practical resource functions both as a text for instructors of a practical NMR course and also as a reference for spectrometer administrators or NMR facility directors when doing user training. This guide serves as serve as excellent, practical resource on its own or as a companion book to Timothy Claridge's High-Resolution NMR Techniques in Organic Chemistry, 2nd Edition (Elsevier, 2009).
This second edition of Introductory Raman Spectroscopy serves as a
guide to newcomers who wish to become acquainted with this dynamic
technique. Written by three acknowledged experts this title uses
examples to illustrate the usefulness of the technique of Raman
spectroscopy in such diverse areas as forensic science,
biochemistry, medical, pharmaceutical prescription and illicit
drugs. The technique also has many uses in industry.
Over the last decade, the use of ion mobility separation in combination with mass spectrometry analysis has developed significantly. This technique adds a unique extra dimension enabling the in-depth analysis of a wide range of complex samples in the areas of the chemical and biological sciences. Providing a comprehensive guide to the technique, each chapter is written by an internationally recognised expert and with numerous different commercial platforms to choose from, this book will help the end users understand the practicalities of using different instruments for different ion mobility purposes. The first section provides a detailed account of the fundamentals behind the technique and the current range of available instrumentation. The second section focusses on the wide range of applications that have benefitted from ion mobility - mass spectrometry and includes topics taken from current research in the pharmaceutical, metabolomics, glycomics, and structural molecular biology fields. The book is primarily aimed at researchers, appealing to practising chemists and biochemists, as well as those in the pharmaceutical and medical fields.
Annual Reports on NMR Spectroscopy provides a thorough and in-depth accounting of progress in nuclear magnetic resonance (NMR) spectroscopy and its many applications. Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained as much significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy.
The 3rd International Multidisciplinary Microscopy Congress (InterM2015), held from 19 to 23 October 2015, focused on the latest developments concerning applications of microscopy in the biological, physical and chemical sciences at all dimensional scales, advances in instrumentation, techniques in and educational materials on microscopy. These proceedings gather 17 peer-reviewed technical papers submitted by leading academic and research institutions from nine countries and representing some of the most cutting-edge research available.
Due to its high sensitivity and selectivity, liquid chromatography-mass spectrometry (LC-MS) is a powerful technique. It is used for various applications, often involving the detection and identification of chemicals in a complex mixture. Ultra Performance Liquid Chromatography Mass Spectrometry: Evaluation and Applications in Food Analysis presents a unique collection of up-to-date UPLC-MS/MS methods for the separation and quantitative determination of components, contaminants, vitamins, and aroma and flavor compounds in a wide variety of foods and food products. The book begins with an overview of the history, principles, and advancement of chromatography. It discusses the use of UHPLC techniques in food metablomics, approaches for analysis of foodborne carcinogens, and details of UPLC-MS techniques used for the separation and determination of capsaicinoids. Chapters describe the analysis of contaminants in food, including pesticides, aflatoxin, perfluorochemicals, and acrylamide, as well as potentially carcinogenic heterocyclic amines in cooked foods. The book covers food analysis for beneficial compounds, such as the determination of folate, vitamin content analysis, applications for avocado metabolite studies, virgin olive oil component analysis, lactose determination in milk, and analysis of minor components of cocoa and phenolic compounds in fruits and vegetables. With contributions by experts in interdisciplinary fields, this reference offers practical information for readers in research and development, production, and routing analysis of foods and food products.
The isolation and structural characterization of substances present at very low concentrations, as is necessary to satisfy regulatory requirements for pharmaceutical drug degradants and impurities, can present scientific challenges. The coupling of HPLC with NMR spectroscopy has been at the forefront of cutting-edge technologies to address these issues. LC-NMR: Expanding the Limits of Structure Elucidation presents a comprehensive overview of key concepts in HPLC and NMR that are required to achieve definitive structure elucidation with very low levels of analytes. Because skill sets from both of these highly established disciplines are involved in LC-NMR, the author provides introductory background to facilitate readers' proficiency in both areas, including an entire chapter on NMR theory. The much-anticipated second edition provides guidance in setting up LC-NMR systems, discussion of LC methods that are compatible with NMR, and an update on recent hardware and software advances for system performance, such as improvements in magnet design, probe technology, and solvent suppression techniques that enable unprecedented mass sensitivity in NMR. This edition features methods to quantify concentration and assess purity of isolated metabolites on the micro scale and incorporates computational approaches to accelerate the structure elucidation process. The author also includes implementation and application of qNMR and automated and practical use of computational chemistry combined with QM and DFT to predict highly accurate NMR chemical shifts. The text focuses on current developments in chromatographic-NMR integration, with particular emphasis on utility in the pharmaceutical industry. Applications include trace analysis, analysis of mixtures, and structural characterization of degradation products, impurities, metabolites, peptides, and more. The text discusses novel uses and emerging technologies that challenge detection limits as well future directions for this important technique. This book is a practical primary resource for NMR structure determination-including theory and application-that guides the reader through the steps required for isolation and NMR structure elucidation on the micro scale.
Anthropic Awareness: The Human Aspects of Scientific Thinking in NMR Spectroscopy and Mass Spectrometry blends psychology, philosophy, physics, mathematics, and chemistry, describing a human-centered philosophy of the essence of scientific thinking in the natural sciences and in everyday life. It addresses the reasons why we are prone to make errors in our conclusions and how to avoid such mistakes, also exploring a number of the "mental traps" that can lead to both individual mistakes and mass misconceptions. The book advocates that by understanding the nature of these mental traps we can adopt tactics to safely evade them. It includes Illustrative examples of common scientific misunderstandings and mental traps in both the theory and real-life application of NMR spectroscopy and mass spectrometry.
Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy.
Updated and expanded, the classic guide to GC/MS helps chromatographers quickly learn to use this technique for analyzing and identifying compounds. After explaining the fundamentals, it discusses optimizing, tuning, using, and maintaining GC/MS equipment; explores advances in miniaturized and field-portable GC/MS systems and microfluidic components; and more. Complete with a CD-ROM, it covers applications in the environmental laboratory and in forensics, toxicology, and space science. This is the premier resource for professionals in those fields and for students.
Recent advances in both experimental techniques and theoretical methodologies have meant that increasingly sophisticated studies concerning the formation, structures, energetics, and reaction dynamics of state- or energy-selected molecular ions can now be performed. In order to better serve the ion chemistry and physics community, each volume of this series will be dedicated to reviewing a specific topic, emphasizing new experimental and theoretical developments in the study of ions. The Wiley Series in Ion Chemistry and Physics will help stimulate new research directions and point to future opportunities in the field of ion chemistry and physics. This fourth volume is devoted to developments associated with the high resolution study of molecular photoionization, presented from both experimental and theoretical viewpoints. This field has been revolutionized in recent years through the rapid development of zero kinetic energy (ZEKE) photoelectron spectroscopy, which is featured prominently within this volume. These advances have expanded the researcher' s ability to probe not just structural features, but also the detailed dynamics of a system, resulting in the interest and applicability of the technique being broadened to areas of chemical physics extending beyond the traditional study of photoionization per se. Each of the twelve chapters making up this volume is written by leading researchers in their respective fields.
This book offers historical and state-of-the-art molecular spectroscopy methods and applications in dynamic compression science, aimed at the upcoming generation in physical sciences involved in studies of materials at extremes. It begins with addressing the motivation for probing shock compressed molecular materials with spectroscopy and then reviews historical developments and the basics of the various spectroscopic methods that have been utilized. Introductory chapters are devoted to fundamentals of molecular spectroscopy, overviews of dynamic compression technologies, and diagnostics used to quantify the shock compression state during spectroscopy experiments. Subsequent chapters describe all the molecular spectroscopic methods used in shock compression research to date, including theory, experimental details for application to shocked materials, and difficulties that can be encountered. Each of these chapters also includes a section comparing static compression results. The last chapter offers an outlook for the future, which leads the next-generation readers to tackling persistent problems.
Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy.
Dipolar Recoupling, by Niels Chr. Nielsen, Lasse A. Strasso and Anders B. Nielsen.- Solid-State NMR Techniques for the Structural Determination of Amyloid Fibrils, by Jerry C. C. Chan.- Solid-State 19F-NMR of Peptides in Native Membranes, by Katja Koch, Sergii Afonin, Marco Ieronimo, Marina Berditsch and Anne S. Ulrich.- Probing Quadrupolar Nuclei by Solid-State NMR Spectroscopy: Recent Advances, by Christian Fernandez and Marek Pruski.- Solid State NMR of Porous Materials Zeolites and Related Materials, by Hubert Koller and Mark Weiss.- Solid-State NMR of Inorganic Semiconductors, by James P. Yesinowski.-"
The book presents recent developments in the field of composites, investigated by Broadband Dielectric Spectroscopy (BDS) and sheds a special focus on nanocomposites. This volume compares the results obtained by BDS with data from other methods like hyphenated calorimetry, dynamical-mechanical spectroscopy, NMR spectroscopy and neutron scattering. The addressed systems range from all kinds of model systems, such as polymers filled with spherical silica particles, advanced materials such as polymers with molecular stickers or hyperbranched polymer-based matrices to industrially significant systems, like epoxy-based materials. The book offers an excellent insight to a valuable application of dielectric spectroscopy and it is a helpful guide for every scientist who wants to study dynamics in composite materials. |
![]() ![]() You may like...
This Is How It Is - True Stories From…
The Life Righting Collective
Paperback
The Soweto Uprisings - Counter-Memories…
Sifiso Mxolisi Ndlovu
Paperback
![]()
Eight Days In July - Inside The Zuma…
Qaanitah Hunter, Kaveel Singh, …
Paperback
![]()
From Scythia to Camelot - A Radical…
C. Scott Littleton, Linda Malcor
Paperback
R1,220
Discovery Miles 12 200
|