![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This book details groundbreaking experiments for the sensing and imaging of terahertz-frequency electromagnetic radiation (THz) using Rydberg atoms. The major advances described include the development and implementation of a new technique for THz imaging using atomic fluorescence; the demonstration of a THz-driven phase transition in room-temperature atomic vapour; and a novel method for probing the excited-state dynamics of atoms using quantum beats. The work has formed the basis for several articles published in journals including Nature Photonics and the Physical Review, and has sparked industry interest, becoming the subject of ongoing collaborative research and development. This exceptionally well-written book provides a definitive account of terahertz sensing with Rydberg atoms.
Written by a team of internationally renowned experts, this book focuses on the application of gas chromatography to various aspects of forensic chemistry. The authors introduce the basic theory of chromatographic separations before discussing specific forensic issues such as drug analysis and fires and explosives. Problems faced by forensic scientists, including degraded samples and small sample size, are also addressed.
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes." For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
Starting from fundamentals and moving through a thorough discussion of equipment, methods, and techniques, the Handbook of Laser-Induced Breakdown Spectroscopy provides a unique reference source that will be of value for many years to come for this important new analysis method. The authors, with a total of over 60 years of experience in the LIBS method, use a combination of tutorial discussions ranging from basic principles up to more advanced descriptions along with extensive figures and photographs to clearly explain topics addressed in the text. In this second edition, chapters on the use of statistical analysis and advances in detection of weapons of mass destruction have been added. Tables of data related to analysis with LIBS have been updated. The Handbook of Laser-Induced Breakdown Spectroscopy, Second Edition: * provides a thorough but understandable discussion of the basic principles of the method based on atomic emission spectroscopy, including recently available data leading to better characterization of the LIBS plasma; * presents a discussion of the many advantages of the method along with limitations, to provide the reader a balanced overview of capabilities of the method; * describes LIBS instrumentation ranging from basic set-ups to more advanced configurations; * presents a comprehensive discussion of the different types of components (laser, spectrometers, detectors) that can be used for LIBS apparatuses along with suggestions for their use, as well as an up-to-date treatment of the newest advances and capabilities of LIBS instruments; * presents the analytical capabilities of the method in terms of detection limits, accuracy, and precision of measurements for a variety of different sample types; * discusses methods of sampling different media such as gases, liquids, and solids; * presents an overview of some real-world applications of the method, with new emphasis on sampling of biologically and physically dangerous materials; * provides an up-to-date list of references to LIBS literature along with the latest detection limits and a unique list of element detection limits using a uniform analysis method; * provides annotated examples of LIBS spectra which can serve as references for the general reader and will be especially useful for those starting out in the field.
This work details an application of collinear resonance ionization spectroscopy for the separation of short-lived isomeric states and their subsequent study with decay spectroscopy.It reports the successful construction ofa novel decay spectroscopy apparatus that can operate at pressures below 1 x 10 DEGREES-9 mbar. The method is demonstrated by separating the nuclear ground and isomeric states of 204Fr and performing alpha-decay spectroscopy. An equivalent mass spectrometer would require 4.6 million times as much resolution to achieve the same result. This work unambiguously confirms the existence of a second isomeric state in 204Fr. The author also demonstrates the effectiveness of this method for laser spectroscopy and identification of hyperfine-structure components with energy tagging. This method was successfully used in 202Fr to identify ground and isomeric states. The measurement of 202Fr reported in this thesis demonstrates a factor of 100 improvement in sensitivity compared to state-of-the-art fluorescence techniques. The work reported in this thesis won the author the IOP Nuclear Physics Group Early Career Pri
CMOS Processors and Memories addresses the-state-of-the-art in integrated circuit design in the context of emerging computing systems. New design opportunities in memories and processor are discussed. Emerging materials that can take system performance beyond standard CMOS, like carbon nanotubes, graphene, ferroelectrics and tunnel junctions are explored. CMOS Processors and Memories is divided into two parts: processors and memories. In the first part we start with high performance, low power processor design, followed by a chapter on multi-core processing. They both represent state-of-the-art concepts in current computing industry. The third chapter deals with asynchronous design that still carries lots of promise for future computing needs. At the end we present a "hardware design space exploration" methodology for implementing and analyzing the hardware for the Bayesian inference framework. This particular methodology involves: analyzing the computational cost and exploring candidate hardware components, proposing various custom architectures using both traditional CMOS and hybrid nanotechnology CMOL. The first part concludes with hybrid CMOS-Nano architectures. The second, memory part covers state-of-the-art SRAM, DRAM, and flash memories as well as emerging device concepts. Semiconductor memory is a good example of the full custom design that applies various analog and logic circuits to utilize the memory cell's device physics. Critical physical effects that include tunneling, hot electron injection, charge trapping (Flash memory) are discussed in detail. Emerging memories like FRAM, PRAM and ReRAM that depend on magnetization, electron spin alignment, ferroelectric effect, built-in potential well, quantum effects, and thermal melting are also described. CMOS Processors and Memories is a must for anyone serious about circuit design for future computing technologies. The book is written by top notch international experts in industry and academia. It can be used in graduate course curriculum.
Expanded bed adsorption chromatography is a novel processing technique for the purification of biomolecules, combining clarification, concentration and initial purification in one step. By such an integration it is possible to reduce the number of steps in the purification process, to shorten the processing time and to improve the yields. The technology is new, and interesting developments have taken place concerning the adsorbents, the processing technology and potential applications. Both small-scale laboratory processes and larger industrial processes are being developed. Expanded bed chromatography is one of the most exciting new developments in downstream processing in recent years. The technology will be a standard procedure when new biotechnological processes are being developed.
A convenient single volume handbook featuring the most important topics in spectroscopy
This book describes fundamental theory and recent advances of sum frequency generation (SFG) spectroscopy. SFG spectroscopy is widely used as a powerful tool of surface characterization, although theoretical interpretation of the obtained spectra has been a major bottleneck for most users. Recent advances in SFG theory have brought about a breakthrough in the analysis methods beyond conventional empirical ones, and molecular dynamics (MD) simulation of SFG spectroscopy allows for simultaneous understanding of observed spectra and interface structure in unprecedented detail. This book explains these recently understood theoretical aspects of SFG spectroscopy by the major developer of the theory. The theoretical topics are treated at basic levels for undergraduate students and are described in relation to computational chemistry, such as molecular modeling and MD simulation, toward close collaboration of SFG spectroscopy and computational chemistry in the near future.
New edition (first, 1973) of an introduction to the principles and applications of all phases of luminescence spectroscopy. Contains (all rewritten) chapters on general aspects of luminescence, instrumentation, effects of molecular structure and environment, inorganic analysis, phosphorescence, fluo
This first book on high-speed atomic force microscopy (HS-AFM) is intended for students and biologists who want to use HS-AFM in their research. It provides straightforward explanations of the principle and techniques of AFM and HS-AFM. Numerous examples of HS-AFM studies on proteins demonstrate how to apply this new form of microscopy to specific biological problems. Several precautions for successful imaging and the preparation of cantilever tips and substrate surfaces will greatly benefit first-time users of HS-AFM. In turn, the instrumentation techniques detailed in Chapter 4 can be skipped, but will be useful for engineers and scientists who want to develop the next generation of high-speed scanning probe microscopes for biology. The book is intended to facilitate the first-time use of this new technique, and to inspire students and researchers to tackle their own specific biological problems by directly observing dynamic events occurring in the nanoscopic world. Microscopy in biology has recently entered a new era with the advent of high-speed atomic force microscopy (HS-AFM). Unlike optical microscopy, electron microscopy, and conventional slow AFM, it allows us to directly observe biological molecules in physiological environments. Molecular "movies" created using HS-AFM can directly reveal how molecules behave and operate, without the need for subsequent complex analyses and roundabout interpretations. It also allows us to directly monitor morphological change in live cells, and dynamic molecular events occurring on the surfaces of living bacteria and intracellular organelles. As HS-AFM instruments were recently commercialized, in the near future HS-AFM is expected to become a common tool in biology, and will enhance and accelerate our understanding of biological phenomena.
This book highlights the theories and applications of quantum acoustical imaging which can be considered as a part of quantum technology. It starts with the theories and background principles of this new field in depth.The examples of some present forms of available acoustical imaging which can be considered as quantum acoustical imaging are given such as ultrasonics in the terahertz range with the use of optical transducers for producing terahertz ultrasound and the theory of sound amplification by stimulated emission of radiation (SASER) and principles based on terahertz ultrasound. The SASER transducer is described, followed by the applications of SASER.Other examples of quantum acoustical imaging are the atomic force acoustic microscope (AFAM) and the ultrasonic force microscope. The author's personal inventions of quantum acoustical imaging are a system based on phonons entanglement based on the quantum property of phonons entanglement and the quantum ultrasound diffraction tomography system.The advantage of quantum acoustical imaging is the defeat of the classical Rayleigh image resolution limit. An unique feature of this book is that it has gone in depth into the quantum theories of acoustical imaging such as phonons entanglement,,superposition principle and the application of transport theory.Quantum microphones and quantum transducers are also introduced with a final chapter on quantum image processing.
Growth of Crystals, Volume 21 presents a survey, with detailed analysis, of the scientific and technological approaches, and results obtained, by leading Russian crystal growth specialists from the late 1990's to date. The volume contains 16 reviewed chapters on various aspects of crystal and crystalline film growth from various phases (vapour, solution, liquid and solid). Both fundamental aspects, e.g. growth kinetics and mechanisms, and applied aspects, e.g. preparation of technically important materials in single-crystalline forms, are covered. A large portion of the volume is devoted to film growth, including film growth from eutectic melt, from amorphous solid state, kinetics of lateral epitaxy and film growth on specially structured substrates. An important chapter in this section covers heteroepitaxy of non-isovalent A3B5 semiconductor compounds, which have important applications in the field of photonics. The volume also includes a detailed analysis of the structural aspects of a broad range of laser crystals, information that is invaluable for successfully growing perfect, laser-effective, single crystals.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued. The current list of Specialist Periodical Reports can be seen on the inside flap of this volume.
Spectroscopic Properties of Inorganic and Organometallic Compounds provides a unique source of information on an important area of chemistry. Divided into sections mainly according to the particular spectroscopic technique used, coverage in each volume includes: NMR (with reference to stereochemistry, dynamic systems, paramagnetic complexes, solid state NMR and Groups 13-18); nuclear quadrupole resonance spectroscopy; vibrational spectroscopy of main group and transition element compounds and coordinated ligands; and electron diffraction. Reflecting the growing volume of published work in this field, researchers will find this Specialist Periodical Report an invaluable source of information on current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Electron Paramagnetic Resonance (EPR) Volume 18 highlights major developments in this area reported in 2001 and 2002, with results being set into the context of earlier work and presented as a set of critical yet coherent overviews. The topics covered describe contrasting types of application ranging from biological areas such as EPR studies of free-radical reactions in biology and medically-related systems to experimental developments and applications involving EPR imaging the use of very high fields and time-resolved methods. Critical and up-to-the-minute reviews of advances involving the design of spin-traps advances in spin-labelling paramagnetic centres on solid surfaces exchange-coupled oligomers metalloproteins and radicals in flavoenzymes are also included. As EPR continues to find new applications in virtually all areas of modern science including physics chemistry biology and materials science this series caters not only for experts in the field but also those wishing to gain a general overview of EPR applications in a given area.
As a spectroscopic method, Nuclear Magnetic Resonance (NMR) has seen spectacular growth over the past two decades, both as a technique and in its applications. Today the applications of NMR span a wide range of scientific disciplines, from physics to biology to medicine. Each volume of Nuclear Magnetic Resonance comprises a combination of annual and biennial reports which together provide comprehensive of the literature on this topic. This Specialist Periodical Report reflects the growing volume of published work involving NMR techniques and applications, in particular NMR of natural macromolecules which is covered in two reports: "NMR of Proteins and Acids" and "NMR of Carbohydrates, Lipids and Membranes." For those wanting to become rapidly acquainted with specific areas of NMR, this title provides unrivalled scope of coverage. Seasoned practitioners of NMR will find this an in valuable source of current methods and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis.
This volume covers various aspects of affinity chromatography along with examples of its applications. Chapters guide readers through methodologies to purify a diverse array of molecular targets such as antibodies, extracellular vesicles, recombinant proteins, biomarkers, metabolites, plant organelles, nucleic acids, ligand identification and protocols on building affinity matrix. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Affinity Chromatography: Methods and Protocols aims to be an invaluable resource to anyone employing affinity chromatography-based methodologies.
At present where protein identification and characterisation using mass spectrometry is a method of choice, this book is presenting a review of basic proteomic techniques. The second part of the book is related to the novel high throughput protein identification technique called the 'molecular scanner'. Several protein identification techniques are described, especially the peptide mass fingerprint with MALDI-MS based method. E.g. ionisation process, matrix available, signal reproducibility and suppression effect, as well as date treatment for protein identification using bioinformatics tools.
This classic textbook is an introduction to the systematics and the use of stable isotopes in geosciences. It is subdivided into three parts: i) theoretical and experimental principles, ii) fractionation processes of light and heavy elements, iii) the natural variations of geologically important reservoirs. Since the publication of the previous edition improvements in multi-collector ICP mass-spectrometry have increased the ability to measure isotope ratios with very high precision for many elements of the periodic table. The amount of published data has increased tremendously in the last years; thus, conclusions based on a limited database are now better constrained. In this new edition, therefore, 47 elements with resolvable natural variations in isotope composition are discussed. This increase of elements, together with advances in the calculation of equilibrium isotope fractionation using ab initio methods, has led to an unbelievable rise of publications, making substantial major revisions and extensions of the last edition necessary. Many new references have been added, which enable quick access to recent literature.
This volume is devoted to the physics, instrumentation and analytical methods of secondary ion mass spectroscopy (SIMS) in relation to solid surfaces. It describes modern models of secondary ion formation and the factors influencing sensitivity of measurements and the range of applications. All the main parts of SIMS instruments are discussed in detail. Emphasising practical applications the book also considers the methods and analytical procedures for constitutional analysis of solids --- including metals, semiconductors, organic and biological samples. Methods of depth profiling, spatially multidimensional analysis and study of processes at the surface, such as adsorption, catalysis and oxidation, are given along with the application of SIMS in combination with other methods of surface analysis.
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.
This thesis provides unique information on the Kerr-lens mode-locking (KLM) technique applied to a thin-disk laser. It describes in detail cavity geometry, the qualitative approach to KLM, and self-starting behavior in the regime of both negative and positive dispersion. Comprehensive comparative analysis of KLM and semiconductor saturable absorber techniques is also carried out. Recent successful experiments on carrier-envelope phase stabilization, spectral broadening and compression of output of this oscillator underline the importance of this new, emerging technology.
This volume provides a collection of state-of-the-art approaches addressing key aspects of multiplexed imaging. Chapters focus on labeling and imaging techniques for multiplexed imaging, as well as on the application of these techniques for the study of cells and tissues. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Multiplexed Imaging: Methods and Protocols aims to be helpful for researchers interested in implementing multiplexed imaging or in developing novel, cutting-edge multiplexed imaging approaches.
NMR is better suited than any other experimental technique for the characterization of supramolecular systems in solution. The presentations included here can be broadly divided into three classes. The first class illustrates the state of the art in the design of supramolecular systems and includes examples of different classes of supramolecular complexes: catenanes, rotaxanes, hydrogen-bonded rosettes, tubes, capsules, dendrimers, and metal-containing hosts. The second class comprises contributions to NMR methods that can be applied to address the main structural problems that arise in supramolecular chemistry. The third class includes biological supramolecular systems studied by state-of-the-art NMR techniques. |
![]() ![]() You may like...
Electron Paramagnetic Resonance - Volume…
Victor Chechik, Damien M. Murphy, …
Hardcover
R12,527
Discovery Miles 125 270
Flavor of Dairy Products
Keith R. Cadwallader, Mary Anne Drake, …
Hardcover
R2,445
Discovery Miles 24 450
Advances in Teaching Physical Chemistry
Mark D. Ellison, Tracy A. Schoolcraft
Hardcover
R5,737
Discovery Miles 57 370
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,527
Discovery Miles 35 270
NMR Spectroscopy in the Undergraduate…
David Soulsby, Laura J. Anna, …
Hardcover
R5,240
Discovery Miles 52 400
|