![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry
This first book on load-pull systems is intended for readers with a broad knowledge of high frequency transistor device characterization, nonlinear and linear microwave measurements, RF power amplifiers and transmitters. Load-Pull Techniques with Applications to Power Amplifier Design fulfills the demands of users, designers, and researchers both from industry and academia who have felt the need of a book on this topic. It presents a comprehensive reference spanning different load-pull measurement systems, waveform measurement and engineering systems, and associated calibration procedures for accurate large signal characterization. Besides, this book also provides in-depth practical considerations required in the realization and usage of load-pull and waveform engineering systems. In addition, it also provides procedure to design application specific load-pull setup and includes several case studies where the user can customize architecture of load-pull setups to meet any specific measurement requirements. Furthermore, the materials covered in this book can be part of a full semester graduate course on microwave device characterization and power amplifier design.
This book is the first comprehensive work to be published on far-ultraviolet (FUV) and deep-ultraviolet (DUV) spectroscopy, subjects of keen interest because new areas of spectroscopy have been born in the FUV and DUV regions. For example, FUV spectroscopy in condensed matter has become possible due to the development of attenuated total reflection/FUV spectroscopy. As other examples, DUV surface-enhanced Raman scattering and DUV tip-enhanced Raman scattering have received great attention. Imaging by DUV spectroscopy has also become an area of interest. More recently, FUV and DUV spectroscopy have shown potential for applications in several fields including industry. All these topics are described in this book. Doctoral students and researchers in universities and national research institutes as well as researchers in various industries will find this volume highly useful.
Over the last decade, scientific and engineering interests have been shifting from conventional ion mobility spectrometry (IMS) to field asymmetric waveform ion mobility spectrometry (FAIMS). Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS explores this new analytical technology that separates and characterizes ions by the difference between their mobility in gases at high and low electric fields. It also covers the novel topics of higher-order differential IMS and IMS with alignment of dipole direction. The book relates the fundamentals of FAIMS and other nonlinear IMS methods to the physics of gas-phase ion transport. It begins with the basics of ion diffusion and mobility in gases, covering the main attributes of conventional IMS that are relevant to all IMS approaches. Building on this foundation, the author reviews diverse high-field transport phenomena that underlie differential IMS. He discusses the conceptual implementation and first-principles optimization of FAIMS as a filtering technique, emphasizing the dependence of FAIMS performance metrics on instrumental parameters and properties of ion species. He also explores ion reactions in FAIMS caused by field heating and the effects of inhomogeneous electric field in curved FAIMS gaps. Written by an accomplished scientist in the field, this state-of-the-art book supplies the foundation to understand the new technology of nonlinear IMS methods.
Summarizing our present knowledge of the structures and chemistry of small organic cations in the gas phase, Assigning Structures to Ions in Mass Spectrometry presents the methods necessary for determining gas-phase ion structures. It is a comprehensive resource of background material that is essential for the interpretation and understanding of organic mass spectra. Following a historical introduction of chief discoveries, the book surveys current experimental methods for ion production and separation as well as those designed to reveal qualitative and quantitative aspects of gas-phase ions. It also examines the computational chemistry and theoretical calculations that provide complementary thermochemical, structural, and mechanistic information. Five selected case studies illustrate specific challenges associated with ion structure assignment and thermochemical problems. The last major section of the book contains the data for describing or identifying all ions containing C alone and C with H, O, N, S, P, halogens, and small organic cations. Presenting material written by leading researchers in the field, Assigning Structures to Ions in Mass Spectrometry underscores the importance of understanding the behavior of small organic ions and gas-phase ion chemistry for making new ion structure assignments
Chemometrics uses advanced mathematical and statistical algorithms to provide maximum chemical information by analyzing chemical data, and obtain knowledge of chemical systems. Chemometrics significantly extends the possibilities of chromatography and with the technological advances of the personal computer and continuous development of open-source software, many laboratories are interested in incorporating chemometrics into their chromatographic methods. This book is an up-to-date reference that presents the most important information about each area of chemometrics used in chromatography, demonstrating its effective use when applied to a chromatographic separation.
HPLC is the principal separation technique for identification of the pesticides in environmental samples and for quantitative analysis of analytes. At each stage of the HPLC procedure, the chromatographer should possess both the practical and theoretical skills required to perform HPLC experiments correctly and to obtain reliable, repeatable, and reproducible results. Developed to serve as a detailed practical guide, High Performance Liquid Chromatography in Pesticide Residue Analysis is a comprehensive source of information and training on state-of-the-art pesticide residue methods performed with the aid of HPLC. The book presents the pros and cons of HPLC as a flexible and versatile separation and analysis tool with multiple purposes and advantages in investigations of pesticides for food and plant drugs standardization, promotion of health, protection of new herbal medicines, and more.
Enhanced concern for the quality and safety of food products, increased preference for natural products, and stricter regulations on the residual level of solvents, all contribute to the growing use of supercritical fluid technology as a primary alternative for the extraction, fractionation, and isolation of active ingredients. As a solvent-free process, supercritical fluid technology is a popular answer for the functional foods and nutraceutical sector, one of the fastest growing consumer driven markets. Recent advancements in the technology and increased utilization of the process demand a comprehensive, single-source review of current and future trends in supercritical fluid technology. Compiling contributions from international experts in the field, Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds presents the state-of-the-science in the extraction and fractionation of bioactive ingredients by supercritical fluids. Focusing on implemented industrial processes and trends, it reviews the fundamentals of the technology and examines the economics of supercritical fluid extraction systems and processes. Over the course of twelve chapters, the book presents the supercritical fluid extraction processes in edible oils, including fish oils and specialty oils; herbs, such as Latin American plants and those used in Traditional Chinese Medicine; algae; spices; antioxidants and essential oils; as well as the processing of micro and nano-scale materials by supercritical fluid technology. Each chapter covers the major active components in the target material, including chemical, physical, nutritional, and pharmaceutical properties; an analysis of the specific supercritical fluid process used; a comparison of traditional processing methods versus supercritical fluid technology; and a set of conclusions with supporting data and insight.
Two-Dimensional Optical Spectroscopy discusses the principles and applications of newly emerging two-dimensional vibrational and optical spectroscopy techniques. It provides a detailed account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy. It also bridges the gap between the formal development of nonlinear optical spectroscopy and the application of the theory to explain experimental results. Focusing on time-domain spectroscopy, the book presents detailed discussions on the underlying physics and interpretation methods of a variety of two-dimensional optical spectroscopic methods. It illustrates how novel diagrammatic techniques are useful in graphically describing the associated nonlinear optical transition pathways and involved population or coherence evolutions. The author also explains the basics of quantum dynamics and time-dependent perturbation theories that are required in describing nonlinear optical processes. From the development of the theory to novel applications, this book covers a gamut of topics in this field, including perturbation theory, coherent Raman scattering, pump-probe spectroscopy, photon echo spectroscopy, IR-visible four-wave mixing, and linear and nonlinear optical activity spectroscopy. It shows how to apply the recently developed tools of vibrational and electronic spectroscopy in two dimensions.
A constructive evaluation of the most significant developments in liquid chromatography-mass spectrometry (LC-MS) and its uses for quantitative bioanalysis and characterization for a diverse range of disciplines, Liquid Chromatography-Mass Spectrometry, Third Edition offers a well-rounded coverage of the latest technological developments and applications. As the technology itself has matured into a reliable analytical method over the last 15 years, the most exciting developments occur in LC-MS augments research into new applications. This edition places a stronger emphasis than previous editions on the impact of LC-MS methods, dedicating two-thirds of the text to small-molecule and biomolecular applications such as proteomics, pharmaceutical drug discovery and development, biochemistry, clinical analysis, environmental studies, and natural products research. Supported by the most relevant literature available, each chapter examines how the strategies, technologies, and recent advances-from sample pretreatment to data processing-in LC-MS helped to shape these disciplines. Featuring new chapters and extensive revisions throughout the book, Liquid Chromatography-Mass Spectrometry, Third Edition continues to provide scientists with a definitive guide and reference to the most important principles, strategies, and experimental precedents for applying LC-MS to their research.
New insights into modern medicine and systems biology are enabled by innovative protocols and advanced technologies in mass spectrometry-based proteomics. This volume details new pipelines, workflows, and ways to process data that allow for new frontiers in proteomics to be pushed forward. With applications to biomarker discovery, interactions between proteins, between biological systems, dynamics of post-translational modifications among others, new protocols have been developed and iteratively refined to probe the endless complexity of the proteome in ever greater details. This volume deals with methods for data dependent and data independent mass spectrometry analyses. Valuable, first-hand information is provided from designing experiments, sample preparation and analysis, exploitation of public datasets and carrying out reproducible data pipelines, using modern computational tools such as Galaxy or Jupyter. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Mass Spectrometry of Proteins: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Used routinely in drug control laboratories, forensic laboratories, and as a research tool, thin layer chromatography (TLC) plays an important role in pharmaceutical drug analyses. It requires less complicated or expensive equipment than other techniques, and has the ability to be performed under field conditions. Filling the need for an up-to-date, complete reference, Thin Layer Chromatography in Drug Analysis covers the most important methods in pharmaceutical applications of TLC, namely, analysis of bulk drug material and pharmaceutical formulations, degradation studies, analysis of biological samples, optimization of the separation of drug classes, and lipophilicity estimation. The book is divided into two parts. Part I is devoted to general topics related to TLC in the context of drug analysis, including the chemical basis of TLC, sample pleparation, the optimization of layers and mobile phases, detection and quantification, analysis of ionic compounds, and separation and analysis of chiral substances. The text addresses the newest advances in TLC instrumentation, two-dimensional TLC, quantification by slit scanning densitometry and image analysis, statistical processing of data, and various detection and identification methods. It also describes the use of TLC for solving a key issue in the drug market-the presence of substandard and counterfeit pharmaceutical products. Part II provides an in-depth overview of a wide range of TLC applications for separation and analysis of particular drug groups. Each chapter contains an introduction about the structures and medicinal actions of the described substances and a literature review of their TLC analysis. A useful resource for chromatographers, pharmacists, analytical chemists, students, and R&D, clinical, and forensic laboratories, this book can be utilized as a manual, reference, and teaching source.
The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for research using in situ techniques to capture the real-time structural and property responses of materials to surrounding fields using electron, optical and x-ray microscopies (e.g. scanning, transmission and low-energy electron microscopy and scanning probe microscopy) or in the scattering realm with x-ray, neutron and electron diffraction.
This open access book collects the contributions of the seventh school on Magnetism and Synchrotron Radiation held in Mittelwihr, France, from 7 to 12 October 2018. It starts with an introduction to the physics of modern X-ray sources followed by a general overview of magnetism. Next, light / matter interaction in the X-ray range is covered with emphasis on different types of angular dependence of X-ray absorption spectroscopy and scattering. In the end, two domains where synchrotron radiation-based techniques led to new insights in condensed matter physics, namely spintronics and superconductivity, are discussed. The book is intended for advanced students and researchers to get acquaintance with the basic knowledge of X-ray light sources and to step into synchrotron-based techniques for magnetic studies in condensed matter physics or chemistry.
Preparative Layer Chromatography explains how this method is used for separating large quantities of mixtures containing a wide variety of important compounds. It offers a broad review of preparative layer chromatography (PLC) applications and adaptable working procedures for microseparations involving organic, inorganic, and organometallic compounds. The book contains theoretical background, chemical principles, and relevance of preparative layer chromatography (PLC) to a wide range of applications, particularly in the study of pharmaceuticals and biochemistry. Written by many of the best known and most knowledgeable specialists in the field, the chapters describe all the necessary techniques, current procedures, and superior strategies for selecting the most suitable eluents and designing application-specific PLC systems based on the data being sought. They provide comprehensive instructions, surrounding issues, and suggestions for optimizing optional working techniques within the framework of PLC. The book also provides a complete coverage of bulk sorbents and precoated chromatographic plates available on the international market. A comprehensive, yet accessible source of information, Preparative Layer Chromatography is a relevant and practical text for experienced as well as novice researchers and practitioners involved in analytical, environmental, geochemical, biological, medicinal, and pharmaceutical analysis.
A complete and up-to-date presentation of the fundamental theoretical principles and many applications of solvent extraction, this enhanced Solvent Extraction Principles and Practice, Second Edition includes new coverage of the recent developments in solvent extraction processes, the use of solvent extraction in analytical applications and waste recovery, and computational chemistry methods for modeling the solvent extraction of metal ions. Offering sound scientific and technical descriptions in a format accessible to students and expedient for researchers and engineers, this edition also features a new chapter on ionic strength corrections and contains more than 850 up-to-date literature citations.
This volume comprises the proceedings of the 15th International Mass Spectrometry Conference held in Barcelona, attended by over 1100 registered delegates from 38 countries. Because the applications of mass spectrometry to biochemistry, biology and medicine have become a very important source of activity in the field these areas are very well represented in the content of this volume. However the importance of fundamental research and instrumental and methodology developments to all applications is also highlighted. The book is divided into five sections: · Fundamentals · Biological/Biochemical Applications, · Instrumentation and Ionization · Analytical Organic Mass Spectrometry · Inorganic Mass Spectrometry These five sections consist of full papers from the excellent plenary and keynote speakers together with abstracts of more than 300 oral and poster contributions from the total of 701 presented at the conference. The selection reflects the present state-of-the art in the field of mass spectrometry.
This book is a comprehensive guide to the theory of optical band shape of guest-molecule-doped crystals, polymers and glasses. The dynamics of a single molecule, measured with the help of a train of photons emitted at random time moments, is a main subject of the book. The dynamics is calculated with the help of quantum-mechanical methods and equations for the density matrix of the system consisting of a single chromophore interacting with light, phonons and non-equilibrium tunneling systems of polymers and glasses. A dynamical theory for one- and two-photon counting methods used in single molecule spectroscopy is presented. Photon bunching and antibunching, jumps of optical lines, and quantum trajectories of various types are further topics addressed. This is the first book to present a detailed theoretical basis for single molecule spectroscopy. It also describes numerous experimental applications of the theory.
This book provides a comprehensive summary of research to date in the field of stable iron isotope geochemistry. Since research began in this field 20 years ago, the field has grown to become one of the major research fields in "non-traditional" stable isotope geochemistry. This book reviews all aspects of the field, from low-temperature to high-temperature processes, biological processes, and cosmochemical processes. It provides a detailed history and state-of-the art summary about analytical methods to determine Fe-isotope ratios and discusses analytical and sample prospects.
High-resolution X-ray spectroscopy has become a powerful tool for astrophysics since the launch of Chandra and XMM-Newton, ten years ago. The grating spectrometers on both instruments still continue to provide excellent data, while imaging calorimeters are being prepared for future missions like Astro-H and IXO. The synergy with other wavelength bands like the UV has been boosted by the addition of COS to HST. X-ray spectroscopy offers unique diagnostics to study almost any object in the Universe. This book contains review papers on highlights and the state-of-the-art of X-ray spectroscopy for a broad range of objects and on the prospects for future studies.
In virtually all types of experiments in which a response is analyzed as a function of frequency (e. g., a spectrum), transform techniques can significantly improve data acquisition and/or data reduct ion. Research-level nuclear magnet ic resonance and infra-red spectra are already obtained almost exclusively by Fourier transform methods, because Fourier transform NMR and IR spectrometers have been commercially available since the late 1960.s. Similar transform techniques are equally valuable (but less well-known) for a wide range of other chemical applications for which commercial instruments are only now becoming available: for example, the first corrmercial Fourier transform mass spectrometer was introduced this year (1981) by Nicolet Instrument Corporation. The purpose of this volume is to acquaint practicing chemists with the basis, advantages, and applica of Fourier, Hadamard, and Hilbert transforms in chemistry. For tions almost all chapters, the author is the investigator who was the first to apply such methods in that field. The basis and advantages of transform techniques are described in Chapter 1. Many of these aspects were understood and first applied by infrared astronomers in the 1950.s, in order to improve the otherwise unacceptably poor signal-to-noise ratio of their spec tra. However, the computations required to reduce the data were painfully slow, and required a 1 arge computer."
Chromatography of Natural, Treated and Waste Waters is the first book to bring together information of a range of chromatographic techniques in all types of water, precipitation to sewage effluents. Organic and inorganic compounds, cations, anions and elements are all discussed. Particular attention is paid to multi compound analysis of water, and the analysis of minute traces of pollutants. Gas chromatography, high performance liquid chromatography and mass spectrometry are included in this well referenced and easy to use book.
Nuclear magnetic resonance (NMR) is widely used across many fields of science because of the rich data it produces, and some of the most valuable data come from studies of nuclear spin relaxation in solution. The first edition of this book, published more than a decade ago, provided an accessible and cohesive treatment of the field. The present second edition is a significant update, covering important new developments in recent years. Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure and special topics such as relaxation in systems with quadrupolar nuclei, in paramagnetic systems and in long-living spin states. Avoiding overly demanding mathematics, the authors explain spin relaxation in a manner that anyone with a familiarity with NMR can follow. The focus is on illustrating and explaining the physical nature of relaxation phenomena. Nuclear Spin Relaxation in Liquids: Theory, Experiments and Applications, 2nd Edition, provides useful supplementary reading for graduate students and is a valuable reference for NMR spectroscopists, whether in chemistry, physics or biochemistry.
This book investigates current trends in chemometrics, proteomics, column technology, and element-selective detection for pharmaceutical, medical, industrial, and environmental applications. It offers recent strategies to evaluate and assess materials in air, water, soil, and landfill samples, to determine the amount of hydrocarbons in the atmosphere and calculate their atmospheric lifetimes, to utilize microfluidic devices for small-volume biological analyses, and to examine the role of proteins in cellular signaling, structures, and pathways. With contributions from leading authorities, this text is an enriching guide for analytical, organic, inorganic, clinical, and physical chemists, chromatographers, biochemists, biotechnologists, and upper-level undergraduate and graduate students in these disciplines.
This book offers an elementary introduction to optical spectroscopy
with polarized light. It is written at a level suitable for
undergraduate students in chemistry and undergraduate or graduate
students in related disciplines such as biochemistry, biology,
chemical engineering and materials science. It emphasizes the
qualitative concepts and deemphasizes mathematics, yet provides
sufficient information and practical hints for experiments. |
You may like...
Children's Book - Lovely Amelia Travels
Stephany Salazar Nelson
Hardcover
Gandhi Searches for Truth - A Practical…
Stephanie N Van Hook
Hardcover
Myra and Elmyra's Cozy Christmas
Tonya L Davis, Elisabeth a R Davis
Hardcover
R542
Discovery Miles 5 420
|